NASA

NASA'’s Core Flight Software- .
a Reusable Real-Time Framework .

Topics:
Core Flight Software (CFS) Overview
Case Study: Morpheus Lander
USC CES Development Efforts
G g V raining Ildes

Advanced- Exmoraf‘o;n*Sys G are Project Manager
NASA - Johnson ST)%‘E@‘*C hten SO e
November 2014 s

Core Flight Software (CFS)

Background Context

® What is CFS?

— NASA Agency Asset for Spacecraft Flight Software Reuse (htip://cfs.gsfc.nasa.gov/)

* Productized real-time flight software developed over several years by Goddard Space Flight
Center to serve as reusable software framework basis for spacecraft missions, test missions,
real-time systems

— Fully tested, documented, operational with LRO spacecraft, several other operational missions since

— Published Service Layer (cFE) and open source Operating System Abstraction Layer (OSAL) for
common services
Pub/sub message bus, time services, events, tables, file, task execution (ntp:/sourceforge net/projects/coreflightexec/files/cFE-6.4.0/)
Runs on multiple platforms and with several operating systems (http://sourceforge.net/projects/osal/)

— Apps or “bubbles” for common spacecraft functions provided as government open source reuse
(available source forge shortly)
Scheduler, commanding, telemetry, communication, data recording, limits, system health, sequences

® Why use it?
— Proven rapid deployment -- Saves software development/test time, costs, skilled resources

— Provides up-front architectural framework and services needed commonly across spacecraft/real-
time embedded command/control applications

« Don'’t have to “reinvent the wheel” every spacecraft for common functions
— Allows ease of development and integration by supporting multiple OS’s and Platforms

® In-house experiences with CFS software development
— High software productivity achieved starting with solid architecture (~15+ SLOC/day)
— Ease of application and hardware/software integration
— Decreased verification needed — mature code and architecture — Test Readiness Level (TRL9)
— Excellent product line support from Goddard

CFS Project Use History — Non Exhaust_.ive,

Johnson Space Center CFS Usage Timeline

[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]
[CELLRANGE]

g 2 4 . . ¢ 140—¢ . ¢ ——¢ .
Oct-09 Apr-10 Oct-10 Apr-11 Oct-11 Apr-12 Oct-12 Apr-13 Oct-13 Apr-14 Oct-14 Apr-15
[CELLRANGE]

[CELLRANGE] [CELLRANGE]
[CELLRANGE]
[CELLRANGE]

CFS Use in Some Current Spacecraft
Goddard Missions:
» Lunar Reconnaissance Orbiter (LRO) (2009)
» Solar Dynamics Observatory (SDO) (2010)
» Magnetospheric Multiscale Mission (MMS) (2014)
» Global Precipitation Measurement (GPM) (2014)
Ames Research Center Missions:
» Lunar Atmosphere and Dust Environment Explorer (LADEE) (2013)
Applied Physical Lab (APL) Missions:
» Radiation Belt Storm Probes (RBSP) (Aug 2012)
» Solar Probe Plus (SPP) (2018)

Core Flight Software (CFS) Architecture Overview

Core Fllght_Software Framework- Notional CFS Application Software Architecture
Architectural Layers

Data To/From Vehicle

r /€| Mass
Storage

Device

Data
Storage

Mission Specific CFS Reusable
CFS Apps Apps

=
S
—> ”E
Q
]

Mission
Specific
Apps -

Hardware

Specific
Device I/0 Inter-task Message Router
Apps - (Software Bus — Publish/Subscribe) Health &
Safety

Components
Manager

Platform Specific Package
(PSP)

. Core Services
@ Example CFS Reuse Apps

@ Mission Specific Apps

2013 - Lorraine E. P. Williams, Ph. D — NASA/JSC/ER6

4

CFS Supported Platforms
(non-exhaustive)

Platform oS Project Status / Notes
RAD750 vxWorks 6.4 LRO,RBSP, Project tested.
GPM
RAD750 RTEMS 4.10 ICESat-2/ Early in instrument test program
ATLAS
Rad Hard Coldfire RTEMS 4.10 MMS Project tested.
(5208)
LEON3 RTEMS 4.10 Solar Probe In Development for SPP mission
Plus
MCP750 PPC vxWorks 6.4 cFE/CFS Tested.
Project Used as baseline CFS development platform.
PC / x86 Linux n/a Not formally tested. Used by JSC.
Coldfire MCF5235 RTEMS 4.10 n/a Not formally tested.
board Used for RTEMS Development, and MMS board.
LEONS3 - generic — RTEMS 4.10 n/a Not tested. Not in CFS CM.
(simulator, Used for LEON3 development.
multiple COTS Can be used on LEON3 Simulator.
boards)
Coldfire Simulator RTEMS 4.10 n/a Not formally tested.
(gemu 68k) Used for OSAL / cFE development
TILERA Linux Maestro IRAD Not formally tested.
(FY12) Compatible with Desktop PC linux version.
MCP750 PPC vxWorks 6.x Memory Adds memory protection to standard cFE.
Protection Not formally tested.
IRAD (FY11) Not integrated with cFE repository.
PC x86 Linux Multi-Core Adds multi-core CPU capability to cFE.
IRAD (FY12) Not formally tested.
Not integrated with cFE repository.
Leon3 PikeOS Virtualization Adds ability to run in partitioned OS.

IRAD (FY12)

Prototype.
Not integrated with cFE repository.

Platform (0 Project Status / Notes

Aitech S950 vxWorks Morpheus In JSC CM.

(PPC750FX) 6.7 Integration tested on real Morpheus
Vehicle hardware. Flown on Morpheus
test vehicle.

RTD pc386- RTEMS ISS In JSC CM.

IDAN, PC104, 4.10 Downmass/ Integration tested on real Micro

Pentium M Micro Capsule hardware.

Capsule
Acro Virtex 5 VxWorks AEMU In development.
6.9
Space Micro VxWorks MMSEV, In JSC CM.
Proton P400k SMP 6.8 AAE In development for MMSEV FY13 work.
Maxwell VxWorks EAM, In JSC CM. EAM about to start using.
SCS750 6.9 AAE
RTEMS
4.10

787FCM Integrity AES CFS In development, producing ARINC653
ARINC cFE, OSAL.

OrionSCP Integrity AES CFS In development, producing ARINC653
ARINC cFE, OSAL.

750FCR VxWorks AES CFS In development, testing FTSS SW fault
ARINC 6.8 containment with a voting quad

architecture.

Trick Linux AES CFS In development, for multi-project use.

(simulation

environment)

LEON3 VxWorks BFS In JSC CM. BFS prototype.

6.7
AiTech SPO VxWorks RPM? In JSC CM. RPM performance analysis.
6.7
¥

Recently Develloped
largely in support of AES projects

others.

Case Study: Project Morpheus

Introduction

Land in 100m x 100 m hazard field \

F——
Launch from “flame trench” pad

While technologies offer promise, capabilities offer potential

solutions with application for future human exploration beyond LEO.

Morpheus provides a bridge for evolving these technologies into
capable systems that can be demonstrated and tested — in a
relevant flight environment.

® Morpheus is a Full Scale Robotic Lander
(500kg payload) built as a risk reduction
test article

— Morpheus system includes the vehicle, ground
systems, operations

— Developed, tested and operated in-house at
Johnson Space Center and KSC

— Example Video: http://www.youtube.com/watch?v=tdrSYP2gSbg

® Technologies:
— Liquid oxygen/methane propulsion (cryogenic,
green, safe for ground handling and crew)
— Precision landing and hazard detection Sensors
— Leverages GSFC’s modular, reusable Core
Flight Software

— Technology incubator for advanced
development efforts

and 14 free fllghts to date
® Lean Development Approach

® Forward Leaning towards Human
Spaceflight

Morpheus Software Components

ma-?—i Flight Software F———v——ees

Custom
CES Morpheus Sensor/ VMWare (local PC/Mac)
Core Specific Effector Eclipse (local IDE)
Apps Applications ADDS CentOS/Linux (local VM 0S)
PP GNU C/C++, Java (compile/Xlate)
[T]Software Reuse Subversion (cm)
D] New Software Redmine (change tracker)
CFS Infrastructure (Goddard) Hudson (build checker)
VxWorks 6.7 Operating System UCC (code count metrics) j
PPC 750GX Processor, cPCl (aech) Windriver Workbench (target IDE/OS)
Parasoft C++test (standards checker)
1/0 Devices (Serial, 1553, A/D)

Morpheus Specific
Controls

/ Simulation Softwar ‘\\ 1 t / Ground Softwareﬁ
. [Displays & y

System & I/0 Models .
scripts

c

i)

®

N <

% Dynamics, Time, JEOD

= Environment Model

S S Command &
w Data

‘uo-'j Generic Systems Dictionary

Valkyrie

Models

ITOS Infrastructure (Goddard)

(Data Com/Decom, Recon, Distribution, Display,
Scripting, Recording, Post processing)

k Linux OS /

Trick Simulation Core (JSC)

k Linux OS /

Morpheus Flight Software Architecture

GNC Sensors

Sensors

Prop EMAs, HW, Valves,

A

TWireless

ﬁ HDS/ALHAT Sensor %

4 video
cameras

57.6Kbps / 100Mbps

C&T Hardware,
Serial Radio and/or
Hard-line Ethernet

4
L WYY
" PWM FW t
Ethernet
Doppler Doppler
Lidar “—>\ 0 I

Videg Switch
232
Ao | P1°
100 Hz 100 Hz

== [] 1 1 1]

Ethernet

Laser

Alt.

¢

SIGI, \ 50 Hz
1553
10

Storage
SSR

1553

l5 Hz)
232 .

5Hz
Acuity Alt. [232". +—>

‘

Nav - KF
(Kalman
Filter)

Nav Fast
Propagate

PPS

) Javad

GPS

Automated

Flight GNC-G GNC-C Prop
SDI500 PR Application | | Application | | Application
IMU (AFM) 5Hz

5Hz

Q\X

‘ cFE Core Services Q Mission Specific /0 Apps

. CFS Configurable Applications Q Mission Specific Apps

Sample CFS App Template

void XXX_AppMain() int32 XXX _InitApp()
{ {
/* Perform application initializations */ int32 iStatus=CFE_SUCCESS;
if (XXX _InitApp() != CFE_SUCCESS)
{ g_XXX_ AppData.uiRunStatus = CFE_ES_APP_RUN;
g_XXX_ AppData.uiRunStatus = CFE_ES_APP_ERROR;
} iStatus = CFE_ES RegisterApp();
if (istatus != CFE_SUCCESS)
/* Application main loop */ {
while (CFE_ES_RunLoop(&g XXX AppData.uiRunStatus) CFE_ES WriteToSysLog("XXX - Failed to register the
== TRUE) app (0x%08X)\n", iStatus);
{ goto XXX InitApp Exit Tag;
XXX _RcvMsg(CFE_SB PEND FOREVER); }
}
if ((XXX_InitEvent() != CFE_SUCCESS) ||
/* Exit the application */ (XXX _InitPipe() != CFE_SUCCESS) ||
CFE_ES ExitApp(g_XXX AppData.uiRunStatus); (XXX _InitData() != CFE_SUCCESS))
} {
iStatus = -1;

goto XXX InitApp Exit Tag;
}

/* Install the cleanup callback */
O0S_TaskInstallDeleteHandler((void*)&XXX CleanupCallback);

XXX InitApp Exit Tag:
if (istatus == CFE_SUCCESS)
{
CFE_EVS_SendEvent (XXX_INIT INF EID,
CFE_EVS_INFORMATION,
"XXX - Application
initialized");
}
else
{
CFE_ES WriteToSysLog("XXX - Application failed to
initialize\n");

Sample CFS App Template (contin'ued)__.

int32 XXX_RcvMsg(int32 iBlocking)

{

int32 iStatus=CFE_SUCCESS;
CFE_SB Msg t* MsgPtr=NULL;
CFE_SB MsgId t MsgId;

/* Wait for WakeUp messages from scheduler */
iStatus CFE_SB_RcvMsg(&MsgPtr, g XXX AppData.SchPipeId,
iBlocking);

/* Start Performance Log entry - create initial entry */

CFE_ES PerfLogEntry (XXX MAIN TASK PERF ID);
if (istatus == CFE_SUCCESS)
{

MsgId = CFE_SB GetMsgId(MsgPtr);

switch (MsgId)
{
case XXX WAKEUP_MID:
XXX ProcessNewCmds () ;
XXX ProcessNewData();

/* TODO: Add more code here to handle other
things
when app wakes up, like any cyclic

processing */

/* The last thing to do at the end of this
Wakeup cycle
should be to automatically publish new

output. */
XXX SendOutDatal();
break;
/* TODO: Add code here to handle other command
IDs, if needed.

Normally, other app commands are added as
command codes

to the app's CMD_MID and processed in
XXX ProcessNewCmds ().

Adding another CMD MID would also require adding
another

command pipe. */

default:
CFE_EVS_SendEvent (XXX MSGID ERR EID,
CFE_EVS_ERROR,
"XXX - Recvd invalid SCH msgId
(0x%08X)", MsgId);
}
}
else if (iStatus == CFE_SB NO_MESSAGE)
{
/* 1f there's no incoming message, you can do something
here,
or do nothing */

}

else

{

/* This is an example of returning on an error.

** Note that a SB read error is not always going to
result in an

** app quitting, depends on the app.

status to

** CFS_ES APP ERROR will cause the app's main loop to
exit and the

** app to exit.

*/

CFE_EVS_SendEvent (XXX_PIPE_ERR_EID, CFE_EVS_ ERROR,

"XXX: SB pipe read error (0x

$08X), app will exit", iStatus);

g_XXX_AppData.uiRunStatus= CFE_ES_APP_ ERROR;

Changing the run

}

/* Stop Performance Log entry */
CFE_ES_ PerfLogExit (XXX MAIN TASK PERF ID);

return (iStatus);

orpheus Simulation

o, A
1010011

— «% Applications Places System %@Qg@
v

DOUG ENG_GRAPHICS : CEV =NES

File Display Edit JntSystems Reconfiy Toggles Options Help Pick API File |].luserdaia/sim_nala/cev_graphics_all_lrans.api ‘

Pick Data Source | Host: kusty ~ Port: 7000 Rate: [0.02 |Runfing Reconnect M ‘

IPlayhaA:k Speed @ 1X . 2X -, 4X -, User Defined

o«

» | «a | » | 8 DEY

N Simulation Control Panel -|B]%
Hle Actions
Run pl
o
C Time -
RET (sec) 163.11
Real Time (sec) 163.11
MET 000:00:02:43

GMT 001:00:02:43
Sim 7 Real Time |1.00

|_CORE_GNC_FSW_07/5_main_Linux_4.1_25.exe RUN_mnrphaﬂ IJ\ ‘

Status

ETi | ‘

2011-012-12:02:15.17729 -- AFM Out---

2011-012-12:02:15.17729 GuidExecCmd @, GuidHopCmd 0, NavPwrFltCmd 0, GuidMode 2,
NavMode 1, CntrlMode 0, PropMode 0

2011-012-12:02:15.17729 cPhase 2, cSubPhase 5, cActivity 5, cEvent 7

-- (1) Nav startup --------

2011-012-12:02:25.17729 -- AFM OQut---

2011-012-12:02:25.17729 GuidExecCmd 1, GuidHopCmd 1, NavPwrFltCmd O, GuidMode 2,
NavMode 1, CntrlMode 2, PropMode 3

2011-012-12:02:25.17729 cPhase 3, cSubPhase 0, cActivity 0, cEvent @

EVS Portl 206/1/CFE_EVS 505: PROP_M_APP: Action to MODE_TO_FLIGHT accepted

EVS Portl 206/1/CFE_EVS 506: PROP_M_APP: Moded to ENGINE_IGNITION LOX CHILLIN
EVS Portl 206/1/CFE_EVS 506: PROP_M_APP: Moded to ENGINE_IGNITION_ HELIUM PURGE
EVS Portl 206/1/CFE_EVS 506: PROP_M _APP: Moded to ENGINE IGNITION IGNITER_ PRESSU

RE

EVS Portl 206/1/CFE_EVS 506: PROP_M _APP: Moded to ENGINE_IGNITION THROTTLE_POS
EVS Portl 206/1/CFE_EVS 506: PROP_M_APP: Moded to ENGINE_IGNITION_ ENGINE_|
E 1

EVS Portl 206/1/CFE_EVS 506: PROP_M_APP: Moded to ENGINE_IGNITION_ENGINE PRESSUR
E2

EVS Portl 206/1/CFE_EVS 506: PROP_M_APP: Moded to FLIGHT OPS_1
2011-012-12:02:32.77729 -- AFM Out---

2011-012-12:02:32.77729 GuidExecCmd 2, GuidHopCmd 1, NavPwrFltCmd O, GuidMode 2,
NavMode 1, CntrlMode 2, PropMode 3

2011-012-12:02:32.77729 cPhase 3, cSubPhase 1, cActivity 0, cEvent @]

0
@ ‘ Terminal I] DOUG EN... | Terminal | +% Simulation C... . | |

12

Morpheus Ground Systems — ITOS Control

13

@ ITOS Information - Introduction

— — — L _ S —

— =il

What is ITOS (Integrated Test and Operations System)?
A low-cost, highly configurable, control and
monitoring system

What are its current applications?
Satellite development, test, & operations
Science instrument development, test, & operations
Ground station equipment monitoring & control

Who is using ITOS?
SAMPEX, TRACE, FAST, SWAS, WIRE,
Spartan 201, 251, 401, 402
HESSI, Swift, ULDB, Triana
PiVot GPS, CIRS, Mars Pathfinder

Who is commercializing ITOS? -
Universal Space Network = —
the Hammers Company ==

ELECTRICAL GSE ¢ P

Omitron | SPACECRAETINTEREACE W

AlliedSignal Technical Services Corporation

From ITOS Promo Presentation: http://itos.gsfc.nasa.gov/ 14 14

ADVANCED EXPLORATION SYSTEMS (AES)
HUMAN EXPLORATION & OPERATIONS MISSION DIRECTORATE

CORE FLIGHT SOFTWARE (CFS) PROJECT
SUMMARY

Core Flight Software
Lorraine Prokop, Ph.D. / JSC

AES Continuation Review - Sep 2013

15

Project Objectives

¢ Objectives
* Provide a reusable software architecture suitable for human-rated
missions

» Reduce/offset per-project software development, test, and certification costs
by performing that work once serving multiple projects

= Address software and hardware issues unique or typical to human-rated
systems

* Provide reusable software products, tools, and artifacts directly usable
by Class A projects/programs, and for general use across NASA

* Support Advanced Exploration Systems projects as they develop toward
flight missions

Build upon reuse of existing

TRL-9 uncrewed spacecraft The Core Flight Software

software framework for / Project’s objective is to evolve

utilization in human-rated and extend the reusability of the Utilize these products in direct
programs. Core Flight Software System support of development and
Leverage platforms, resources into human-rated systems, thus certification of future manned
and skills from synergetic enabling low cost, and rapid programs.

programs/projects for access to space.

human-rated space software

systems.

development of next generation
16

AES Continuation Review - Sep 2013

CFS AES Project
Product Summary to Date

¢ FY13 Products

Quad-Voting CFS System — CFS on Partitioned VxWorks RTOS,
synchronizing & voting 4 computers

CFS within Trick Simulation

Distributed CFS — network-based software bus

CFS on Orion/B787 Platform — CFS on Partitioned Green Hills RTOS
Reusable Certification Test Suite

¢ FY14 Products

Class A CFS Certification on Orion Platform

Performance Monitoring Tool Development

CFS Synch & Voting Software Development

Symmetric Multicore Processor (SMP) CFS Development

Product Line

Command & Data Dictionary Ground Database Tools
Education/Outreach

Orion Backup Computer Proof of Concept Demonstration 17

AES Continuation Review - Sep 2013

CFS Partiti

10 Partition

Rogue App
CFS Apps
TO,Cl,Sch

Scheduler with
Sampling Port Proxy

Scheduler with
Sampling Port Proxy

PSP (PPC750GX)

PSP (PPC750GX)

FTSS
Data
Exchange &
Voting

Sampling Port 1/O

PSP (PPC750GX)

Off Board 1/O (Ethernet)

CFS Apps
TO.Cl.Sch

FCR 4k

CFS Partition A CFS Partition B 10 Partition

CFS Apps
TO.Cl.Sch

PSP (PPC750GX)

Off Board 110 (Ethernet,)

Four fault-contalnment regions (FCRs)
— 4 Flight Critical Computers (FCC)

Software voting

Ethernet

Will accommodate 2 arbitrary non-
simultaneous faults

CFS Partition A CFS Partition B 10 Partition

CFS Apps
TO.Cl.Sch
CFS Apps
TO.Cl.Sch

FCR 2

Sampling Port I/O

CFS Partition A CFS Partition B 10 Partition

CFS Apps
To.CL.Sch

FCR 3

PSP (PPC750GX)

Off Board I/O (Ethernet)

Synchronization & Voting

ontinuation Review -

Embedded CFS-Trick Background
Flight Software - Simulation Philosophies

HWITL [Friant Software LSimuIation Software]
“Iron Bird” [%.ght hardware) Flight I/O Interface (test RIG)
I Fliaht Software] _ [Simulation Software]
External [glight hardware) Nol:t-:l!il’g(}:;;lo (simulation computer)
Sim (typically Ethernet)
Fliaht Software _ [Simulation Software]
[(nogn—ﬂight hardware)] Non-Flight I/O (simulation computer)
Interfaces
(typically Ethernet)
o)
= (Socket N
© : [Flight Software] omunIcnon [Simulation Software]
9 (separate executable) (separate executable)
o - (single computer) J
4
Embedded [Simulation Software Flight Software
I20 (single computer, single executable)

\

« Typically this
flight software is
not REAL, but an
algorithmic

prototype/analog

* Allows SAME
source code to
run in ALL
configurations

« Allows
analysis, faster-
than-real-time

| execution, data

inspection,
debugging

AES Continuation Review - Sep 2013

20

Distributed CFS Demo Configuratio

4 res)
Scheduler A:: 1 Scheduler
40Hz 40H 40Hz

Telemetry
Output

5Hz

Command
Ingest

5Hz

Command
Ingest

Telemetry
Output

5Hz

== sbn over IP comm
== CCSDsS over IP comm

Ethernet

Wireless

80Hz \

Local Display (Java)

H
v

/ Ground Display Computer \ /

(ITOS)

" B CFS Distributed Demo - “sbn” [

CPU A telemetry CPU B telemetry @
CPU A Counter CPU A Counter C P U C
CPU B Counter CPU B Counter
CPU C Counter CPU C Counter
Cmd CountA Cmd Count B

J

_ A

AES Continuation Review - Sep 2013

Scheduler
20Hz

21

CFS on Partitioned OS/B787
Class A Product Team

‘E‘(’
) o

v

s
.
!

e
\

—

3

AES Continuation Review - Sep 2013

Test Suite Output Excerpt

PASSED [cFE.EVS.12.005] CFE_EVS ResetAllFiltersCmd - Reset all filters - successful

PASSED [cFE.EVS.12.006] CFE_EVS_AddEventFilterCmd - Add event filter - successful

PASSED [cFE.EVS.12.007] CFE_EVS_AddEventFilterCmd - Add event filter - event already registered for filtering

PASSED [cFE.EVS.12.008] CFE_EVS_SetFilterMaskCmd - Set filter mask - successful

PASSED [cFE.EVS.12.009] CFE_EVS_ResetFilterCmd - Reset filter mask - successful

PASSED [cFE.EVS.12.010] CFE_EVS_ ResetAllFiltersCmd - Reset all filters - successful

PASSED [cFE.EVS.12.011] CFE_EVS_DeleteEventFilterCmd - Delete event filter - successful

PASSED [cFE.EVS.12.012] CFE_EVS_AddEventFilterCmd - Maximum event filters added

PASSED [cFE.EVS.13.023] CFE_EVS_VerifyCmdLength - Invalid command length with clear log command

PASSED [cFE.EVS.14.001] EVS_GetApplicationinfo - Get application info with null inputs

PASSED [cFE.EVS.14.002] CFE_EVS_WriteLogFileCmd - Write log data - successful

PASSED [cFE.EVS.14.003] CFE_EVS_SetLoggingModeCmd - Set logging mode - successful

PASSED [cFE.EVS.14.004] CFE_EVS_ReportHousekeepingCmd - Housekeeping report - successful

PASSED [cFE.EVS.14.005] CFE_EVS_CleanUpApp - Application cleanup - successful

ut_cfe_evs PASSED 175 tests.
ut_cfe_evs FAILED O tests. 23
AES Continuation Review - Sep 2013

Performance Monitoring Tool

creenshots

|7'CFs Performance Monitor "W

L=lElx

File Log IDs Plot Help

Step [Thread | Statistics ‘

E
ALTIMETER_M_APPMAIN_PERF_ID

Eritr)
CF_APPMAIN_PERF_ID

Busy
CPU Activity

3
ADIO_M_APPMAIN_PERF_ID
xit

Start |0.888834

End |0.998740

Delta [0.109906

Delta |

 Performance | e
File Log IDs Plot Help
ECf T
Selactiplot CNTRL_M_APPMAIN
= _PERF_ID —
[=l[=](x]
_[cr_cvcLe_enc.pe]
== RE_ID
[N\
End

BIEE]

I\ \[ALTIMETER_M_APP
\ MAIN_PERF_ID

AES Continuation Review - Sep 2013

ey = | IN_PERF_ID
CF_CYCLE_ENG_PERF_ID ..« HESRSRSSURERRRRRS| SREANLARGENS ﬂ \ci_m_mAIN_TASK_P| [|IN_PERF_TD
CF_FREAD_PERF_ID \L__ERF.D___ | I
- e JADIO_M_APPMAIN_ CF_FREAD PERF.ID LAt |
CFE_ES_MAIN_PERF_ID PERF_ID = == N_PERF_ID |
efd N_PERF_ID
CFE_TIME_LOCALIHZISR_PERF_ID)
s R ________ |INn_PERF_ID
CFE_TIME_LOCALLHZTASK_PERF_ID 4UPF'—'“‘§F”I'D“A‘N—P N_PERF_ID |
d - d
CFE_TIME_MAIN_PERF_ID To_wg)_spcég;Eltr)_SEN A K_PERF_ID
. 3 = = IN_PERF_ID
06 07 08 08 1.0 11
Time (seconds) N_PERF_ID
(e N_PERF_ID
TS AT T TR T e T = FsTrrrreiN_PERF_ID
HK_M_APPMAIN_PERF_ID © value CI_M_MAIN_TASK_PERF_ID
Ll GIDEIO_M_APPMAIN_PERF_ID
0.8585 0.8590 0.8595 0.8600
Time (seconds) OE0 SE-S 1E-4 1.5E-4
O — : =0 sec
[~ Performance ID Editor " "W x| [Log Data: perfLog " WM X
Row Show “ Mask ” D “ Name Color Freq Events Notes Index D ” Name Tlm?sztc?mp ErE‘)t(;tw u iﬁg 0‘(’:;31" Notes
1 @ ' 0x000000d0 ADIO_M_APPMAIN_PERF_ID u 0 330 263 Ox0000000f CF_FREAD_PERF_ID 0.042382 5
2 @ & 0x000000cd ALTIMETER_M_APPMAIN_PERF_ID] 0 16 264 Ox8000000f CF_FREAD_PERF_ID 0.042426 #
3 @ ' 0x00000012 CF_CYCLE_ENG_PERF_ID] 0 8 - - - Find out what
4 @ & 0x0000000f CF_FREAD_PERF_ID o 0 164 265 0x000000d0 ADIO_M_APPMAIN_PERF_ID 0.042436 5 0.002175 20% S ADT0 overrun
5 @ ¥ 0x00000021 CIM_MAIN_TASK PERF_ID . 0 34 266 0xB00000d0 ADIO_M_APPMAIN_PERF_ID 0.042461 #
- : .
6 ‘:J v gxgggggggi ?gTRLjSEiE:Méé:BPS;;;I?D 4 g 58423 267 0x000000bf EMA_IO_M_APPMAIN_PERF_ID 0.042470 %
! = N - M —EDTERY — 268 OxB00000bf EMA_TO_M_APPMAIN_PERF_ID 0.042498 4
269 0x00000038 DS_APPMAIN_PERF_ID 0.042506 5
| = New ‘ I 4 up I l « Show All | l 5% Color | l { Clear l l 7 Save ‘
| = Delete ‘ | ¥ Down | ‘ Q Hide All | ‘) Print | l 5) Reset [\ il Close ‘
ILog Statistics: perfLog " ™ [x]
D N Entry Exit Avg Freq Time Act Time Inact Time Act Time Inact Min Act Max Act Min Int Max Int Min Over Max Over
ame Events Events (evt/sec) (seq) (seq) %) (%) (seq) (seq) (seq) (seq) (sed) (sed
0x00000025 HK_M_APPMAIN_PERF_ID 1502 1502 915.29 0.001223 1.639792 0.075 99.925 0.000000 0.000094 0.000003 0.012941 n/a n/a
0x00000038 DS_APPMAIN_PERF_ID 1492 1492 909.19 0.001509 1.639506 0.092 99.908 0.000000 0.000104 0.000001 0.012662 n/a n/a
0x00000032 TO_M_SOCKET_SEND_PERF_ID 275 275 167.58 0.003817 1.637198 0.233 99.767 0.000005 0.000072 0.000008 0.100094 n/a n/a
0x000000cf DIO_M_APPMAIN_PERF_ID 166 166 101.16 0.024685 1.616330 1.504 98.496 0.000051 0.000458 0.000826 0.013286 n/a n/a
0x000000d7 HDSIF_M_SOCK_PERF_ID 166 166 101.16 0.008247 1.632768 0.503 99.497 0.000001 0.000408 0.000009 0.022701 0.007330 0.012701
0x000000d0 ADIO_M_APPMAIN_PERF_ID 165 165 100.55 0.003445 1.637570 0.210 99.790 0.000003 0.000101 0.006989 0.012714 0.000002 0.002714
0x000000bf EMA_IO_M_APPMAIN_PERF_ID 165 165 100.55 0.004131 1.636884 0.252 99.748 0.000003 0.000194 0.007197 0.012759 n/a n/a
0x000000cS PROP_M_APPMAIN_PERF_ID 165 165 100.55 0.011316 1.629699 0.690 99.310 0.000028 0.000308 0.007014 0.012940 n/a n/a
Overall 5000 5000 3046.89 0.105892 1.535123 6.453 93.547 0.000000 0.000458 0.000000 1.0025390 0.000002 0.002714
24

CFS Synchronization & Voting Development

«* Applications Places System + @ i @ = © ¢ © = . FriSep 5, 11:53 AM tngo

¢ Voting System for Fault Tolerance S

® Description

» Provides CFS framework solution for
synchronization/redundancy
between flight computers

SCH_VTR

cpu3_vtr - ITOS Page Display

®* Accomplishments 2ia R -1
» Designed System, held several Tam .
design Inspections, held s e Mo, | e _
Demonstrations o 2
» |mplementation underway
= Supported Heterogeneous Voting oting ate: 1Hiz Voting rate: 101z
Computer Dem Onstrati on 9 /1 7 /201 4 Voting method: by-majorit Voting method: by-master

CPU #3
AiTech SPO

AiTech S950

®* Remaining Work (FY15)

PowerPC processor PowerPC processor
= Continue development Vaorks 6305 4 \Works 705
= Improve system robustness/reliability abery A
» Analyze/Improve Performance Raspbion 05
|

Support Time Triggered Systems

” Control & Display

Acer
Intel duo-core processol cPU#1
2GHz clock HP Probook

Centos OS i ¥ | :_ AMD quad-core processor _.':;\.m.w:»\
1.6GHz clock
Centos 0OS

25
AES Continuation Review - Sep 2013

Symmetric Multiprocessing
CFS Development

& Symmetric Multiprocessing (SMP) Support

¢ Description

= Provide a generic SMP Operating System Abstraction Layer (OSAL)
supporting multi-core processor architectures

¢ Accomplishments

= Prototype implementation of CFS on dual core Space Micro Proton board
and VxWorks SMP complete

— Apps can be allocated to specific cores to deterministically balance processing
load or to improve performance of certain apps

* Remaining Work (FY15)
» Implement on SPARC LEON 4 quad-core, Tilera 36-core

= Merge SMP support modifications into mainline CFS
Proton LEON4 quad-core Tilera 36-core

.....

s

A + KSC developed general purpose data integration tool
: for managing command and telemetry metadata

* Intended to be generic in nature and applicable to any
project using CFS or ITOS

* Web based interface built with Ruby on Rails

* Data can be ingested from a variety of formats
including flat text files or Excel spreadsheets

* Imported into PostgreSQL relational database on
which a wide variety of queries and reports can be
run from MCTS provided GUI screens

» Currently capable of exporting data directly into ITOS
compatible data record format

s e Future enhancements include exporting data to XTCE

format files as well as ‘C’ type data structure
statements for compiling into CFS application code

+ Demonstration held August 2014

27
AES Continuation Review - Sep 2013

Education/Course Idea: CFS on AR Drone
Embedded with Trick Controls & Simulation

= STOL (ITOS Release 8.15.0 for i686-RedHat-5.2) - 0O x jruf@jsc-er-cfs03:~/drone/cfs/build/linux/exe - O x gdecaruf@jsc-er-cfs03:~/drone/cfs/trick_sim/SIM_ARDRONE = M@
Prompt II 7| prev| vetp|progs 2rminal Help . File Edit View Search Terminal Help
D=2228,0,0,0,0,0 WIAT*PCMD=2420,0,0,0,0,0
GUI STOL ROTWING_GENERIC_CMD_MID
Strip Chart - 0 x

View Actions View Actions

Strip Chart Strip Chart

| -y
- =X
1.0 i =
09 ‘
081
ardrone2_console2 - ITOS Page Display -
File Data 0
06
CIRE: E] |
T
s 05 ‘
0.4 [
03 }
0.2 “
[Indoor/Outdoor as: ! T 011 | ! -0.30
{
0.0 - L -035
- Ges GBO G5 EmE GRS GO EED b dekD MEE 1D e 825 850 875 900 925 950 975 1000 1025 1050 1075 1100
L Simulation Time (seconds) Simulation Time (seconds)
ON OFF . = = 0] —s = oz
) sim.ardroneSim state.cgPos[0] — sim.ardronesim state cgPosiz]] [sim.ardronesim state bodyWindvel[0] — sim.ardronesim state.cgvel[0]]
Init Config Domain Axis Display Variables Domain Axis Display Variables
- - Al \Z\ Lines Add sim.ardroneSim.nav.eulerRates[0] v O Al & Lines Add ‘slm.ardroneSm nav.eulerRates[0] -
P ® Strip ‘ 30'0‘ [Points Remove ||sim.ardroneSim.state.cgPos[0] v ||| ® strip ‘ 30.0| | [J Points Remove ‘slm.ardroneSm state.bodywindvel[0] v
Fixed I Show Legend | Domain Axis: |Simulation Time (seconds) v O Fixed © Show Legend || Domain Axis: \S\mulatlon Time (seconds) >
Strip Chart - ox Strip Chart - o x
View Actions View Actions
Strip Chart i 1
—] e Strip Chart
0 0.0003
120 i
ON | OFF 0.0002 il
110 £ l

- 0.0000 - e -

06 O m \ I m 2 06 |]
T : ' Ny T i
= Input % Input % 80 {

0 0.6 0

[K3 70
s
[“0s[o] 05| - EBd
(150 [-135 o0 a5 o5 [0 1135 150 I " 50
o g
30
201 -0.0009
104 -0.0010
& Event Viewer[0] - O x -0.0011
0 — —
Windows ~ Options Connection -0.0012 s
825 850 875 900 925 950 975 1000 1025 1050 1075 1100
| [ty npe R B ce ol 825 850 875 90.0 925 950 975 1000 1025 1050 1075 110.0 ; h .
= = simulation Time (seconds) Simulation Time (seconds)
[sim.ardronesim.nav.eulerfPR[0] — sim ardronesim.nav.eulerPR1]] sim ardroneSim state dragForcel01]
Domain Axis. Display Variables Domain Axis Display Variables
5 rter output output_0 . = g i
TinClient 5 direct(jsc-er-cts03. 3sc. nasa. gov/388) Al W Lines Add ||sim.ardronesim.nav eulerRates[0] v) imes Add__|sim.ardronesim.nav.culerRates[0] M
frame_sorter :54: 05: rame_sorter: accepted output 0 o ® Strip ‘ 300‘ O Points Remove |[sim.ardronesim.nav.eulerYPR[0] o 30,0‘ [J Points Remove ‘sim.ardroneswm.state.dragForce[O] 7
tinClient glebal p . . S —
tinClient 154114 tinClient: global prefix Fixed) Show Legend Domain Axis: |Simulation Time (seconds) v ¥ show Legend Domain Axis: \Slmu\atlon Time (seconds) hd
tinClient 4 :54 tInClient al prefix sika| v
Ex\J 1 1 IVIINVAWKVITIIL / VA=W Wi W o

AES Continuation Review - Sep 2013

CFS Project “To Do List”

Class A Products, Human Ratable

Certify Class A on Orion primary Platform
Certify Class A on Orion backup (vxWorks/LEONS3) Platform

Testing

Reusable test suite additions for vxWorks

Cross-platform test framework

White-box testing of OSAL layer

Integrated unit test execution/post processing/reports

Build interface/instrument CFS code for performance testing,
monitoring, display interface

Reusable performance test suite

Human Spacecraft Support Activities

Support for Redundancy

Symmetric (same OS & shared mem) Multiprocessor Support (SMP)
(Dual core, 4 core, 36 core)

Asymmetric Multiprocessor CFS support
Open source Quad CFS voting layer (continued in FY15)

VML — (virtual machine language) integration w/ CFS
Support for Distributed Systems (sbn additions)

User Interface Display Support — OpenGL Interface
Backup Flight Systems Architecture exploration

Development Tools - Productivity / Interoperability

Performance Monitoring / Profiling Tool (Linux/Java)
Data Definition / Ground Integration Tools (continued FY15)

Autogeneration of application from a variety of tools - Matlab/
Simulink/Rhapsody/sysML/Eclipse,

Matlab/Simulink simulation of CFS layers
Top-Coder effort to start with CodeReview Redmine Tool

Additional Operating Systems / Hardware Platforms

i0S

Other real-time: real-time Linux, eCos

Additional Hypervisor prototyping- picos

FPGA with soft cores, PSP’s for hybrid chips with hard cores

SpeC|f|c Support Needed or AES Projects

DTN-CFS integration development

AMO-CFS integration

AAE project platforms / chosen architectures
RPM development

Exploration Augmentation Module development
Advanced EVA development support

Outreach Maturation — Quad Copter

Develop Sim of Quad Copter, Basic GNC Apps
Develop product distribution for outreach (CFS, Apps & Trick)

CFS Institutional Support/Infrastructure

Configuration Control, evolution, product planning
Website: how-to, wiki, FAQ, downloads

Product support & releases, training

SARB Recommended fixes

Possible Flight Projects

ISS Flight Computer shadow
Orion Backup flight computer prototype, Leon3 processor
Software partition for Asteroid Retrieval Mission

Core Flight Software System (CFS)/
Core Flight Executive (cFE)
Training Material

Jonathan Wilmot
GSFC/Code 582
Jonathan.J.Wilmot@nasa.gov
301-286-2623

cFE- Page 30

cFE - Overview

» A set of mission independent, re-usable, core flight software
services and operating environment

Provides standardized Application Programmer Interfaces (API)
Supports and hosts flight software applications

Applications can be added and removed at run-time (eases system
integration and FSW maintenance)

Supports software development for on-board FSW, desktop FSW
development and simulators

Supports a variety of hardware platforms

Contains platform and mission configuration parameters that are used to
tailor the cFE for a specific platform and mission.

» cFE services include:

Executive Services
Software Bus Services
Time Services

Event Services

Table Services

 Layered on the Operation System Abstraction

cFE- Page 31

Motivation

About six years ago GSFC was tasked two large in-

house missions with concurrent development schedules
(SDO, GPM)

GSFC was to build the spacecraft bus, both avionics and
software, and integrate the whole spacecraft

Without the staff for both, we were directed to find a
better way

So management said, “you engineers figure out how to
make the schedule and keep the cost in line”

o We had about a year to figure it out before staffing up

This is before full cost accounting

cFE- Page 32

Approach

« Formed a team of senior FSW engineers to strategize and
develop a better way

 Each had experience on a few different missions and
immediately saw all the commonality we could have had

« Team then decided to:
— Determine impediments to good flight software reuse

— Utilize best concepts from missions ranging from Small Explorer class to
the Great Observatories

— Design with reusability and flexibility in mind
— Take advantage of software engineering advances
— Be Composable

 Management helped isolate team engineers from short term
mission schedules

 Team established architecture goals

cFE- Page 33

e

a ~ o Db

6.
7.
8.

Goals

. Reduce time to deploy high quality flight software

Reduce project schedule and cost uncertainty
Directly facilitate formalized software reuse
Enable collaboration across organizations

Simplify sustaining engineering (AKA. On Orbit FSW
maintenance) Missions last 10 years or more

Scale from small instruments to Hubble class missions
Build a platform for advanced concepts and prototyping

Create common standards and tools across the center

cFE- Page 34

0101 1000 0010 =

0101 1000 0010

0101 1000 0010
1000 0010

0101 1000 0010

. N

Flight'Sotewate Branct

SMEX-
Lite \
SAMPEX Swift BAT
(launched 8/92) (launched 12/98) (jaunched 3/98) (launched 2/99) (cancelled) (12/04)
XTE (launched 12/99) TRMM (launched 11/97) / ‘(
JWST ISIM
(2013)

MAP (launched 06/01)

ST-5 (5/06) SDO (2008)

cFE- Page 35

Heritage , what worked well

Message bus
— All software applications use message passing (internal and external)

— CCSDS standards for messages (commands and telemetry)
— Applications were processor agnostic (distributed processing)

Layering

Packet based stored commanding (AKA Mission Manager)
— Absolute Time Sequence (ATP), Relative Time Sequence (RTP)

Vehicle FDIR based on commands and telemetry packets
Table driven applications

Critical subsystems time-triggered on network schedule
— 1553 bus master TDMA

Clean application interfaces

— Component based architecture (The Lollipop Diagram)

cFE- Page 36

Heritage , what worked well

* Lots of innovation
— Constant pipeline of new and varied missions
— Teams worked full life cycle

* Requirements through launch + 60days

* Maintenance teams in-house and in contact with engineers early in
development

— Teams keep trying different approaches
* Rich heritage to draw from

cFE- Page 37

Heritage: what didn’t work so well

« Statically configured Message bus
— Scenario: GN&C needs a new diagnostic packet
» Give the C&DH team your new packet definition file

* \Wait a week for a new interim build
* Rinse and Repeat

— How do | add a new one on orbit? (FAST mission example)

* Monolithic load (The “Amorphous Blob”)

— Raw memory loads and byte patching needed to keep bandwidth needs
down

 Reinventing the wheel

— Mission specific common services (“Look , I've got a new and improved
version!”)

« Application rewrites for different OSes

cFE- Page 38

Re-use in the Past

In the past, GSFC’s Flight Software Branch (FSB) has
realized little cost savings via FSW reuse

— No product line. Instead heritage missions were used as starting
point

— Changes made to the heritage software for the new mission were
not controlled

. Ngw flight hardware or Operating System required changes throughout
FSW

 FSW Requirements were sometimes re-written which effects FSW and
tests.

« FSW changes were made at the discretion of developer
« FSW test procedure changes were made at the discretion of the tester
« Extensive documentation changes were made for style

— Not all Products from heritage missions were available
— Reuse was not an formal part of FSB development methods
— Reuse was not enforced

cFE- Page 39

Concepts and Standards

° Layered Architecture

* Standard Middleware/Bus Core Flight Executive (cFE)

« Standard Application Programmer Interface
for a set of core services

 Plug and Play Reusable Applications CFS Applications
« Command & Telemetry database
- Reuse Standards Library & CM

 Reuse Repository

« Configuration Tool for Mission Users Integrated Development

« Development Tools Environment

* Reuse Requirements Management }

40

cFE- Page 40

0101 1000 0010 \

0101 1000 0010

0101 1000 0010 -\
CFE La ; el S 0101 1000 0010

1000 0010
~

Flight'Sotewarte Branch

Application
Layer

Services

e A—
PSP & BSP Supported
Hardware

Physical
Mission Hardware
Layer

Hardware

cFE- Page 41

Publish/Subscribe

Components communicate over a
standards-based Message-oriented
Middleware/Software Bus.

The Middleware/ Software Bus uses a
run-time Publish/Subscribe model.

Message source has no knowledge of
destination.

No inherent component start up
dependencies

Impact:

Minimizes interdependencies

Supports HW and SW runtime “plug and
playu

Speeds development and integration.

Enables dynamic component distribution
and interconnection.

Standard Middleware Bus

Legacy: Tightly-coupled, custom interfaces- data formats - protocols,
internal knowledge, component interdependence

=y
VS - N
[0} | O
O O .
. . .
i N -
2" 0 o
N N N

Publish/Subscribe: loosely-coupled, standard interface, data
formats, protocols, & component independence

42

cFE- Page 42

Application Programmer Interfaces

CFS services and middleware
communication bus has a standardized,
well-documented API

An abstracted HW component API
enables standardized interaction

between SW and HW components.

Impact:

Allows development and testing using
distributed teams

With the framework already in place,
applications can be started earlier in
the development process

Can do early testing and prototyping on
desktops and commercial components

Simplifies integration

Standard Application Programmer Interface AR

0101
010.
o~

Fll

SwW
- Component

Messaging

Time, Events, Tables, etc

Executive Services

Control and Data

cFE

HW
Component

API supplies all functions and data components
developers need.

43

cFE- Page 43

Plug and Play

cFE API's support add and remove
functions

SW components can be switched in and o

at runtime, without rebooting or rebuilding

the system SW.

Plug and Play

ut

Qualified Hardware and CFS-compatible Difficult
software both “plug and play.”
New Add Remove Reconfig Redistribute
Impact:

Changes can be made dynamically during Sk
development, test and on-orbit even as part
of contingency management N - -

o " al I
Technology evolution/change can be taken . g . g <
advantage of later in the development g" B 58

cycle.

Testing flexibility (GSE, test apps,
simulators)

This powerful paradigm allows SW components to be switched in and out
at runtime, without rebooting or rebuilding the system SW.

44

cFE- Page 44

Reusable Components

Reusable Components
« Common FSW functionality has been

abstracted into a library of reusable ‘"' -'“”’“;“t
components and services. Reusable]; Custor
Component omponent Adapter
« Tested, Certified, Documented '
o A system iS bUiIt from' cFE Software Bus and Environment
— Core services | I | | B D B i SR \
— Reusable components
— Custom mission specific
components
— Adapted legacy components image Orbit e R
I m pac t . Processor Control Process Command
« Reuse of tested, certified components cFE Software Bus and Environment
supplies savings in each phase of the Proximity =~ HW HW W
software development cycle Sensor Comp Comp oo Comp

* Reduces risk

« Teams focus on the custom aspects of
their project and don’t “reinvent the

wheel.” 45

cFE- Page 45

Command Ingest
Telemetry Output
CFDP

Checksum

Data Storage

File Manager
GN&C Framework
Housekeeping
Health and Safety

Limit Checker

Math Libraries

Memory Dwell

Memory Manager
Scheduler

Stored Command

Sample CFS Reusable Applications

Reusable component for spacecraft commanding

Reusable component for sending and packaging telemetry
Transfers/receives file data to/from the ground
Performs data integrity checking of memory, tables and files

Records housekeeping, engineering and science data onboard for
downlink

Interfaces to the ground for managing files
Provides framework for plugging in ACS models and objects
Collects and re-packages telemetry from other applications.

Ensures that critical tasks check-in, services watchdog, detects CPU
hogging, and calculates CPU utilization

Provides the capability to monitor values and take action when exceed
threshold

Scalar, vector, matrix and quaternion functions

Allows ground to telemeter the contents of memory locations. Useful
for debugging

Provides the ability to load and dump memory.
Schedules onboard activities (eg. hk requests)

Onboard Commands Sequencer (absolute and relative). N
cFE- Page

Health and Safety App / Housekeeping App

Health and Safety App
— Monitor Applications

» Detect when defined applications are not running and take a defined action

— Monitor Events
* Detect table defined events and take a table defined action

— Manage Watchdog
« Initialize and periodically service the watchdog
» Withhold periodic servicing of the watchdog if certain conditions are not met

— Manage App Execution Counters
* Report execution counters for a table defined list of Application Tasks

Housekeeping App
— Build combined telemetry messages containing data from applications

— Notify the ground when expected data is not received

cFE- Page 47

Data Storage App / File Manager App

- Data Storage App
« Stores Software Bus messages (packets) to data storage files.
» Filters packets according to packet filter table definition
« Stores packets in files according to destination table definition

 File Manager App
* Manages onboard files

 Copy, Move, Rename, Delete, Close, Decompress, and
Concatenate files providing file information and open file listings

 Manages onboard directories
» Create, delete, and providing directory listings
» Device free space reporting

cFE- Page 48

« Limit Checker App
— Monitors Table Driven Telemetry Watch points

« Each watch point compares a telemetry data value with a constant
threshold value

— Evaluates Table Driven Action points
« Each action point analyzes the results of one (or more) watch points

« Memory Dwell App
— Samples data at any processor address
- Augments telemetry stream provided during development and debugging
— Dwell Packet Streams are Specified by Dwell Tables
— Up to 16 active Dwell Tables

— Dwell Tables can be populated either by Table Loads or via Jam
Commands

cFE- Page 49

Scheduler App / Stored Command App

« Scheduler App

— Operates a Time Division Multiplexed (TDM) schedule of Applications via
Software Bus Messages

« Synchronized to external Major Frame (typically 1 Hz) signal

« Each Major Frame split into a platform configuration number of
smaller slots (typically 100 slots of 10 milliseconds each)

« Each slot can contain a platform defined number of software bus
messages (typically 5 messages) that can be issued within that slot

« Stored Command App

— Executes preloaded command sequences at predetermined absolute or
relative time intervals.

— Supports Absolute Time Tagged Sequences
— Supports Relative Time Tagged Sequences

cFE- Page 50

Checksum App / Memory Manager App fF =

« Checksum App

— Monitors the static code/data specified by the users and reports all
checksum miscompares as errors.

— CS will be scheduled to wakeup on a 1Hz schedule

— CS will be byte-limited per cycle to prevent CPU hogging

« Memory Manager App
— Performs Memory Read and Write (Peek and Poke) Operations
— Performs Memory Load and Dump Operations
— Performs Diagnostic Operations

— Provides Optional Support for Symbolic Addressing

¢FE- Page 51

Other CFS Apps

« CFDP App
— Implements flight portion of CCSDS CFDP Protocol
« Command Uplink App
— Implements flight portion of CCSDS Command uplink
— Usually mission specific
« Telemetry Output App
— CCSDS Telemetry downlink
— Usually mission specific
« Memory Scrub App
— Memory Scrub — Scrubs SDRAM check bits
— Usually mission specific
« ClLab & TO Lab
— UDP sockets based uplink and downlink apps for lab testing

cFE- Page 52

Component Example

* Interface only through core APT’s.

* A components contains all data needed to define

it’s operation. /_- = = - \

Table API Event AP SBAPI Exec & Task
* Components register for services A
* Register exception handlers Tables Messages
* Register Event counters and filter Files : Application
. . . code body
* Register Tables .
* Publish messages
* Subscribe to messages
* Component may be added and removed at
runtime. (Allows rapid prototyping during Excepon Frents &
development)
Exec Exception Time API

APy - /

cFE- Page 53

cFE Core - Overview

» A set of mission independent, re-usable, core flight software services and
operating environment

— Provides standardized Application Programmer Interfaces (API)
— Supports and hosts flight software applications

— Applications can be added and removed at run-time (eases system
integration and FSW maintenance)

— Supports software development for on-board FSW, desktop FSW
development and simulators

— Supports a variety of hardware platforms

— Contains platform and mission configuration parameters that are used to
tailor the cFE for a specific platform and mission.

Time
Services

Executive Event Software Table
Services Services Bus Services

(ES) (EVS) (SB) (TBL) (TIME)

cFE- Page 54

cFE Core - Executive Services (ES)

Manages the cFE Startup
Provides ability to start, restart and delete cFE Applications

« Manages a Critical Data Store which can be used to preserve data (except
in the case of a power-on reset)

« Provides ability to load shared libraries

» Logs information related to resets and exceptions
 Manages a system log for capturing information and errors
» Provides Performance Analysis support

Executive
Services
(ES)

c¢FE- Page 55

cFE Core - Software Bus (SB)

* Provides a portable inter-application message service

* Routes messages to all applications that have subscribed to the message.
— Subscriptions are done at application startup
— Message routing can be added/removed at runtime

» Reports errors detected during the transferring of messages

» Outputs Statistics Packet and the Routing Information when commanded

Software
Bus
(SB)

cFE- Page 56

cFE Core - Event Services (EVS)

Provides an interface for sending asynchronous informational/error
messages telemetry to ground

— Provides a processor unique software bus event message containing the
processor ID, Application ID, Event ID, timestamp, and the request-
specified event data (text string including parameters)

Provides an interface for filtering event messages

Provides an interface for registering an application’s event filter masks,
types, and type enable status

Provides an interface for un-registering an application from using event
services

Provides an interface for enabling/disabling an application’s event filtering
<optional> Provide an interface for logging event into a local event log

Event
Services
(EVS)

¢FE- Page 57

@ cFE Core - TIME Services

« Provides a user interface for correlation of spacecraft time to the
ground reference time (epoch)

* Provides calculation of spacecraft time, derived from mission elapsed
time (MET), a spacecraft time correlation factor (STCF), and
optionally, leap seconds

« Provides a functional API for cFE applications to query the time

« Distributes of a “time at the tone” command packet, containing the
correct time at the moment of the 1Hz tone signal

» Distributes of a “1Hz wakeup” command packet
 Forwards tone and time-at-the-tone packets

Time
Services
(TIME)

c¢FE- Page 58

cFE Core - Table Services

Manages all CFS table images
Provides an API to simplify Table Management

Table Registry is populated at run-time eliminating cross coupling of
Applications with flight executive at compile time

Performs table updates synchronously with the Application that owns the
table to ensure table data integrity

Shares tables between Applications
Allows Non-Blocking Table updates in Interrupt Service Routines
Provides a common ground/user interface to all tables

Table
Services
(TBL)

cFE- Page 59

Operating System Abstraction Layer (OSAL)
Overview

A standalone project, separate from the cFE
— The cFE is built on the OSAL to provide portability

Available as Open Source on NASA’s Open Source Website
— http://opensource.gsfc.nasa.gov

Allows execution of FSW on multiple Real Time OSs
— Build Verification testing done using VxWorks 6.4

Allows execution of FSW on simulators and desktop computers

Support three primary targets

— POSIX

« OSX

* Linux

« Cygwin
— RTEMS 4.10
— VxWorks 6.x

cFE- Page 60

Platform Specific Package Overview

« Supports the following Hardware Platforms/Operating Systems
(non exhaustive)

— Flight Hardware Environments
« MCP750/vxWorks 6.x
« BAE RAD750/VxWorks 6.x
» Coldfire/RTEMS 4.x
 MCP405/linux (Spacecube)

— Desktop FSW Test Environments
« MAC/OSX
* MAC/linux
« PC(x86)/linux, Cygwin

¢FE- Page 61

