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• Advanced genome sequencing technologies are 
generating data at an unprecedented rate. 

• How do we make sense of all of this data? 

• One answer: “Nothing in biology makes sense 
except in the light of evolution.” T. Dobzhansky



Input and Output of An Example Comparative Genomic Study 
(Nature 423 2003)

 55

to detect the genome-wide signature of motif-like conservation.  We use these tests to 

detect all significant patterns with strong genome-wide conservation, constructing a list 

of 72 genome-wide motifs.  We compare this list against previously identified regulatory 

motifs and show that our method has high sensitivity and specificity, detecting most 

previously known regulatory motifs, but also a similar number of novel motifs.  In 

chapter 4, we assign candidate functions to these novel motifs, and in chapter 5, we study 

their combinatorial interactions.  

3.4. Conservation properties of known regulatory motifs 

We first studied the binding site for one of the best studied transcription factors, 

Gal4, whose sequence motif is CGG(N)11CCG (which contains 11 unspecified bases). Gal4 

regulates genes involved in galactose utilization, including the GAL1 and GAL10 genes 

that are divergently transcribed from a common intergenic region (Figure 3.2). The Gal4 

Figure 3.2. Phylogenetic footprinting of the Gal1-Gal10 intergenic region reveals functional nucleotides.  
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A Comparative Genomics Pipeline
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Fig. 2. An example illustrating the positional de Bruijn graph (k = 4,� = 1) and de Bruijn graph on a set of aligned reads, with their corresponding sets
of k-mers and positional k-mers. There exists a single sequencing error in the reads (shown in red). In the de Bruijn graph, the (k � 1)-mer GCC appears as
a single vertex, whereas, the positional de Bruijn graph separates the occurrence of GCC into two vertices. This additional information incorporated into the
graph further constraints the gluing process and reduces complexity. Further, the positional k-mers (GCCT, 111) and (GCCT,975) have multiplicity 1 and 4,
respectively, but the k-mer GCCT has multiplicity 5. This increases the weight of the incorrect path, and thus the likelihood of an error in the contig produced
by the de Bruijn graph. Lastly, we note that in this example no vertex gluing operations occur but in more complex instances, vertex gluing will occur when
equal k-mers align at adjacent positions.

denote u� v as u[1 . . . (i� 1)] � v[j . . . j0] � u[(i0 + 1) . . . n]. The
refinement process starts by setting Cr equal to C. Next, for each
partial contig ci 2 {c1, c2, . . . , cn}, we let Cr be equal to Cr � ci.

The order in that partial contigs are used to refine Cr is important
because the alignments of several partial contigs to Cr may overlap.
In positions where such an overlap occurs, any changes from
previously used partial contigs will be overwritten by the last.
When coverage is uniform we process the partial contigs in order
of increasing length, however, when it is highly non-uniform we
process them in order of increasing average weight. In both cases,
ties are broken arbitrarily and alignments below a certain length
are not considered. Thus, SEQuel has two user-defined modes
corresponding to the described scenarios: standard, and single-cell
mode.

3.5 Software Implementation

SEQuel is implemented in Java 6.0, and can optionally be run as a
multithreaded application. All tests were performed on a PC with
32 cores (64-bit, 2.27 GHz) and 512 GB of RAM running Linux.
Although benchmarking was performed on this computer, SEQuel
can be run on a standard desktop; see Section 4.5.

4 RESULTS
4.1 Datasets

In order to evaluate the performance of SEQuel, we use three
different datasets described in Chitsaz et al. (4). All datasets
consist of paired-end 100 bp reads from E. coli, generated by
Illumina, Inc. on the Genome Analayzer (GA) IIx platform. The
first dataset consists of approximately 27 million paired-end reads,

4
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Applications
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(Nature Reviews Genetics 
5, 2004)

Detecting  
regulatory elements

Detecting cancer  
mutations

(Nature 465, 2010)

Gene finding

And many, many more …
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Three Major Challenges

• Computational challenge: accurate and scalable 
algorithms and tools for large-scale analyses 

• Statistical challenge: realistic yet tractable models 
of genome evolution 

• Biological challenge: co-occurrence of multiple 
complex evolutionary events
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Part I: Fast and Accurate 
Alignment and Tree Estimation 

on Large-Scale Datasets



SATé: Simultaneous Alignment and Tree 
estimation (Liu et al. Science 2009) 

• Standard methods for alignment and tree estimation have 
unacceptably high error and/or cannot analyze large 
datasets 

• SATé has equal or typically better accuracy than all 
existing methods on datasets with up to thousands of 
sequences  

• 24 hour analyses using standard desktop computer 

• SATé-II (Liu et al. Systematic Biology 2012) is more 
accurate and faster than SATé on datasets with up to tens 
of thousands of taxa
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…ACGGTGCAGTTACCA…

Substitution

    …ACCAGTCACCCATAGA… 

Deletion Insertion

!14



…ACGGTGCAGTTACCA…

Substitution

    …ACCAGTCACCCATAGA… 

Deletion Insertion

The true alignment is:  

 …ACGGTGCAGTTACC-----A…   

 …AC----CAGTCACCCATAGA…  

!15



DNA Sequence Evolution (Example)

AAGACTT -3 mil yrs

-2 mil yrs

-1 mil yrs

today

AAGGCTT AAGACTT

TAGCCCA TAGACTT AGCGAGCAATCGGGCAT

ATCGGGCAT TAGCCCT AGCA

Substitutions Insertions 
Deletions
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DNA Sequence Evolution (Example)

-3 mil yrs

-2 mil yrs

-1 mil yrs

today

AAGACTT

TGGACTTAAGGCCT

ATCGGGCAT TAGCCCT AGCA

AAGGCTT TGGACTT

AGCGAGCATAGACTTTAGCCCAATCGGGCAT
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Tree and Alignment Estimation 
Problem (Example)

TAGCCCA TAGACTT AGCA AGCGATCTGGGCAT

u v w x y

u

v w

x

y

u = ATCTGGCAT 
v = T--AGCCCA 
w = T--AGACTT 
x = AGCA----- 
y = AGCG-----

!18



● Number of trees |T| grows exponentially in n, the 
number of leaves: 

!

● The number of alignments |A| also grows 
exponentially in n and the length of the longest 
unaligned sequence. 

● All of the common and useful optimization 
problems are NP-hard.

Many Trees and Many Alignments

!19



Insight: iterate - use a moderately accurate tree to obtain a more 
accurate tree 
If new alignment/tree pair has worse likelihood, realign using a 
different decomposition 
Repeat until convergence under the maximum likelihood optimization 
criterion  

SATé Algorithm

Estimate tree on new 
alignment

Tree
Obtain initial alignment   
and tree

Insight:!
Use tree to perform 
divide-and-conquer 
alignment

Alignment
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A

B D

C
e

SATé iteration  
(Actual decomposition size is configurable)
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A

B D

C Decompose based 
 on input tree A B

C D
e

SATé iteration  
(Actual decomposition size is configurable)
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A

B D

C Decompose based 
 on input tree A B

C D
Align 

subproblems

A B

C D

e

SATé iteration  
(Actual decomposition size is configurable)
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A

B D

C

Merge 
subproblems

Decompose based 
 on input tree A B

C D
Align 

subproblems

A B

C D

ABCD

e

SATé iteration  
(Actual decomposition size is configurable)
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A

B D

C

Merge 
subproblems

Estimate tree on 
merged alignment

Decompose based 
 on input tree A B

C D
Align 

subproblems

A B

C D

ABCD

e

SATé iteration  
(Actual decomposition size is configurable)
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e

SATé iteration  
(Actual decomposition size is configurable)
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Results on a Dataset with 27,000 Sequences

!27Liu et al. Systematic Biology 2012.



Summary of Part I
• Created novel tree-based divide-and-conquer 

techniques for simultaneous alignment and tree 
estimation, enabling: 
- Scalability to thousands of sequences or more 
- High accuracy 

• Family of algorithms included: 
- SATé (Liu et al. Science 2009) 
- SATé-II (Liu et al. Systematic Biology 2012) 
- and others

!28



Part II: Beyond Trees



Almost all comparative genomic approaches 
assume that genomes have evolved down a tree.

!30 (Nature 431, 2004)



• However, it has been shown that: 
- different genomic regions might evolve down 

different trees, and 
- the set of species might not have evolved in a 

strictly diverging manner.

A
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different gene trees for different regions in the Staph aureus !
genomes, due to horizontal gene transfer!
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A Machine Learning View of  
Comparative Genomics

Genomes

Species network!
(DAG)!

+!
gene trees

A

B

C
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C

Stochastic !
Generative !

Model

Observed Data!
(Genomic sequences)



Overarching Goal

• For every site in the genome, learn: 
- the local gene tree along which the site evolved, 

and  
- the evolutionary trajectory that the local gene tree 

took within the species network. 
• We also want a confidence measure for the 

inference.

!33



My Approach

• Modeling: Combine species networks and hidden 
Markov models into one unified framework, 
PhyloNet-HMM. 

• Inference: Using genomic sequence data, the task 
is to learn the model.

!34
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Gene Trees with Different Trajectories in a 
Species Network

Gene trees

Species !
network



Disentangling  
Gene Tree 
Trajectories 
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Insight: “Pull apart”      
species network into 
two “parental trees”

!37

Disentangling  
Gene Tree 
Trajectories 



“Horizontal” and “Vertical”  
Incongruence

Horizontal!
incongruence
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Horizontal!
incongruence

Vertical!
incongruence

Vertical!
incongruence

“Horizontal” and “Vertical”  
Incongruence
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A

B

C

Gene-tree-
switching 
breakpoint

IVI II III V

ψ2 regionψ1 region

A Sequence-Level 
View of Local 
Incongruence

g1 g2 g3

ψ1 ψ2
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Insight #1

• “Horizontal” and “vertical” incongruence between 
neighboring gene trees represent two different 
types of dependence. 

• Model the two dependence types using two 
classes of transitions in a graphical model.

!41



Insight #2

• DNA sequences are observed, not gene trees. 
• Under traditional models of DNA sequence 

evolution, the probability P(s|g) of observing DNA 
sequences s given a gene tree g can be efficiently 
calculated using dynamic programming.

!42



Insight #1 + Insight #2 =  
Use a Hidden Markov 

Model (HMM)

!43



Hidden Markov Model (HMM) Example

• Coin tossing experiment:  

1. An experimenter flips one of two hidden coins 
with unknown bias and tells you the result.  

2. Repeat for a total of k trials, resulting in 
observation sequence O.

!44 Example adapted from Rabiner (1989).



s1 s2

a11 a22a12

a21

Hidden Markov Model (HMM) Example
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• The HMM has N=2 states. 

• The HMM is in state qt at time t, where 1≤t≤k. 

• The set of HMM parameters λ consists of:  

- The transition probability matrix A = {aij} 

- The emission probabilities B = {bi} 

- The initial state distribution πi =P(q1 = si)

!46

s1 s2

a11 a22a12

a21

Hidden Markov Model (HMM) Example



1. What is the likelihood of the model given the observation sequence? 

- Forward algorithm calculates prefix probability 

- Backward algorithm calculates suffix probability  

- Model likelihood is  

2. Which sequence of hidden states best explains the observation 
sequence? 
- Posterior decoding probability γt(i) is the probability that HMM is in state si at time t, 

calculated as: 

3. How do we choose parameter values that maximize the model likelihood? 

- Apply Baum-Welch algorithm to search for  

Three Problems Addressed 
Using HMMs

!47



PhyloNet-HMM:  
Problem Definition

g1 g2 g3

ψ1 ψ2
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PhyloNet-HMM: Hidden States

q1 q2 q3

r1 r2 r3

s0

Introgressed

Non-introgressed
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q1 q2 q3

r1 r2 r3

s0

Introgressed

Non-introgressed

PhyloNet-HMM: Hidden States 
and Transitions Involving q1

!50



PhyloNet-HMM
• Each hidden state si is associated with a gene tree g(si) 

contained within a “parental” tree f(si) 

• The set of HMM parameters λ consists of  

- The initial state distribution π  

- Transition probabilities 

  

    where γ is the “horizontal” parental tree switching frequency. 

- The emission probabilities bi = P(Ot|g(si))

!51



• The probability of a gene tree topology g given a 
containing species tree (Ψ,λ) (Degnan and Salter 
2005): 

!

• The probability of observing DNA sequences S 
given a gene tree (g, ω) can be efficiently 
computed using dynamic programming 
(Felsenstein 1981).

!52

28 J. H. DEGNAN AND L. A. SALTER

from the probability of the events on each branch, using the
puv(T) terms from equation (1). Here the probability that u
lineages coalesce into v lineages on a specific branch must
also reflect the possibility that there might be more than one
way for these coalescences to occur. Assuming that all pos-
sible orderings, correct and incorrect, are equally likely (this
follows the model of Yule [1924]), and that u lineages have
coalesced into v lineages, the probability that the ordering of
events on the branch is consistent with the gene tree is the
number of correct orderings divided by the number of pos-
sible orderings. Multiplying the probabilities of the events
on different branches yields the probability of the coalescent
history for the entire tree. (These probabilities are not nec-
essarily independent because they depend on the events of
descendent branches. This will be discussed below.) Given
a list of coalescent histories and the probabilities of events
on each branch, the overall probability of a gene tree given
a species tree can be obtained.
Under the coalescent model, for a given n-taxon species

tree with topology c and vector of branch lengths l 5 (l1,
l2, . . . , ln22), where each lb is measured in units of 2N
generations, the gene tree topology G is a random variable
with probability mass function

n22w(h) w (h)bP (G 5 g) 5 p (l ). (2)O Pc,l u (h)v (h) bb bd(h) d (h)h∈H (g) b51 bc

The sum is over all histories h taken from the set Hc(g) of
all valid coalescent histories for the particular gene tree and
species tree. The product is taken over all internal branches
of the species tree, labeled 1, 2, . . . , n 2 2. The terms

, which can be determined from equation (1), arep (l )u (h)v (h) bb b
used to calculate the probability, for a particular coalescent
history h and a particular branch b, that ub(h) lineages co-
alesce into vb(h) lineages in the time lb, the length of branch
b. Here 2 # ub(h) # db, where db is the number of taxa for
which branch b is an ancestor, and 1 # vb(h) # ub(h). The
terms wb(h)/db(h) and w(h)/d(h) determine the probability
for each branch and prior to the root that the coalescent events
are consistent with the gene tree. Here wb(h) is the number
of ways that coalescent events on a branch can occur con-
sistently with the gene tree, and db(h) is the number of pos-
sible orderings of events.
The next two sections provide details for enumerating co-

alescent histories and for computing the necessary terms in
equation (2), and can be skipped without loss of continuity.
These are followed by discussions regarding the shape of
gene tree distributions, the number of coalescent histories,
applications, and possible extensions.

ENUMERATING COALESCENT HISTORIES

To enumerate the set of valid coalescent histories Hc(g),
each proposed coalescent history h can be identified with an
integer h 5 (hk 2 1) (n 2 1)n222k. The values of h aren22Ok51
at most (n 2 1)n22 2 1, which corresponds to the coalescent
history h 5 (n 2 1, n 2 1, . . . , n 2 1). This value of h
occurs when all clades of the gene tree coalesce prior to the
root. If a proposed history h is valid, then h ∈ Hc(g). The
problem of determining the set of valid coalescent histories

is to enumerate values of h for which 0 # h # (n 2 1)n22

2 1 and that correspond to valid histories.
To check whether a proposed coalescent history h 5 (h1,

h2, . . . , hn22) is valid, it must be the case that if hk 5 b, that
is, if clade k of the gene tree coalesces on branch b of the
species tree, then all of the taxa in clade kmust be descendants
of branch b on the species tree. These restrictions on valid
coalescent histories can be summarized in a matrixM5 (mij),
where mij 5 1 if clade j of the gene tree only includes taxa
that are also in clade i of the species tree; otherwise, mij 5
0. Therefore, a necessary condition for a coalescent history
h 5 (h1, h2, . . . , hn22) to be valid is that if hk 5 b, and if b
# n 2 2, then mbk 5 1 for all k 5 1, 2, . . . , n 2 2. Note
that any clade of the gene tree can coalesce prior to the root
of the species tree, and that the clade associated with the root
of the gene tree can only coalesce prior to the root of the
species tree. Consequently, we only need to keep track of
clades 1, 2, . . . , n 2 2 of the gene tree and branches 1, 2,
. . . , n 2 2 of the species tree, so the M matrix is (n 2 2)
3 (n 2 2).
For even a moderate number of taxa, the maximum value

of h, (n 2 1)n22 2 1, is unmanageably large. To reduce the
number of histories that must be evaluated, h can be incre-
mented more rapidly by skipping over large numbers of con-
secutively occurring histories that are not allowed. In par-
ticular, if the proposed coalescent history has the form h 5
(h1, h2, . . . , hk, 1, . . . , 1) with hk 5 b . 1 and mbk 5 0,
then that history is prohibited by the M matrix, as are all
remaining vectors that have hk 5 b. If the proposed histories
are enumerated sequentially, then the next (n 2 1)n222k 2 1
histories are invalid, and therefore do not need to be checked.
This greatly reduces the number of histories that must be
evaluated.
As an example of filling in the M matrix for Figures 1a

and 1b, consider m52. Because all taxa in clade 2 of the gene
tree are present in clade 5 of the species tree, a valid coa-
lescent history might have clade 2 of the gene tree coalesce
on branch 5 of the species tree. Therefore, m52 5 1. Filling
in the matrix yields

0 0 0 0 0 

1 0 0 0 0 
M 5 0 0 0 0 0 . (3) 

0 0 0 0 0 
0 1 1 1 0 

Recalling that any clade can coalesce prior to the root (i.e.,
branch 6), this M matrix specifies that clade 1 can only co-
alesce on branch 2 or 6; clades 2, 3, and 4 can only coalesce
on branch 5 or 6; and clade 5 can only coalesce prior to the
root.
A further restriction for a coalescent history h to be valid

is that if i and j are clades of the gene tree and j is an ancestor
of i, then i must coalesce more recently than j or on the same
branch of the species tree as j. Again, these restrictions can
be represented as a matrix R 5 (rij) where rij 5 1 if and only
if i is an ancestor of j on the gene tree; otherwise, rij 5 0.
A coalescent history h 5 (h1, . . . , hi, . . . , hj, . . . , hn22),
with 1 # i , j # n 2 2, is not permissible if hj , hi and j

PhyloNet-HMM: Two Calculations



1. What is the likelihood of the model given the observed DNA sequences? 

- Forward algorithm calculates prefix probability 

- Backward algorithm calculates suffix probability  

- Model likelihood is  

2. Which sequence of hidden states best explains the observed DNA 
sequences? 
- Posterior decoding probability γt(i) is the probability that HMM is in state si at time t, 

calculated as: 

3. How do we choose parameter values that maximize the model likelihood? 

- Apply E-M to optimize  

!53

Three Problems Addressed Using 
PhyloNet-HMM



Related Methods
• Current methods for inference under species networks fall into two 

classes: 

1. Methods that work for at most three genomes, e.g. 

• D-statistic (Durand et al. 2012) 

• CoalHMM (Mailund et al. 2012) 

2. Methods that consider vertical incongruence or horizontal 
incongruence but not both, e.g. 

• CoalHMM (Hobolth et al. 2007, Schierup et al. 2009) 

• RecHMM (Westesson and Holmes 2009)

!54



Evaluating PhyloNet-HMM
• Simulation study using: 

- Species tree model 

- Species network model 

• Empirical study of different sets of mouse genomes: 

- Controls: lab mice, wild mice from populations that 
lacked gene flow 

- Additional wild mice from populations where gene flow 
was suspected 

!55



Simulation Model
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Simulation Study Results
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Empirical Study: 
Non-control Mice (Chromosome 7)
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The Vkorc1 Gene and  
Personalized Warfarin Therapy

Rost et al. Nature 427, 537-541 2004.

• Mutant Vkorc1 gene 
contributes to warfarin 
resistance 

• Warfarin resistant 
individuals require 
larger-than-normal dose 
to prevent clotting 
complications (like 
stroke)

�59



Warfarin and Adverse Events
• Warfarin is the most widely prescribed blood 

thinner 
• Treatment is complicated because every 

patient is different 
- Gene mutations confer resistance or susceptibility 

• Annually, 
- 85,000 serious bleeding events  
- 17,000 strokes  
- Cost: $1.1 billion

McWilliam et al. AEI-
Brookings Joint Center 2006. !60



Warfarin is Really 
Glorified Rodent 

Poison

Reproduced from UTMB. 
!61



The Spread of Warfarin 
Resistance in Wild Mice  

• Humans inadvertently started a gigantic drug trial by giving 
warfarin to mice in the wild 

• Mice shared genes (including one that confers warfarin 
resistance) to survive (Song et al. 2011) 

- Gene sharing occurred between two different species 
(introgression) 

• To find out results from the drug trial, we just need to 
analyze the genomes of introgressed mice and locate the 
introgressed genes 

!62



Summary of Part II
• PhyloNet-HMM generalizes the basic coalescent model, one of the 

most widely used models in population genetics, by using a DAG in 
place of a tree 

• Simulated and empirical data sets with tree-like and non-tree-like 
evolution were used to validate PhyloNet-HMM 

• PhyloNet-HMM found non-tree-like evolution in multiple mouse 
chromosomes 
- Introgressed mouse genes confer warfarin resistance, many with 

related human genes 
- New candidate genes to target for improved personalization of 

warfarin therapy 
• Study of non-tree-like evolution is a fundamentally important 

research topic in biology

!63



Future Research and"
Summary



Future Direction #1
• Previous analyses (at most five genomes and a 

single network edge) required more than a CPU-
month on a large cluster 

• Problem is combinatorial in both the number of 
genomes and the number of network edges 

• Challenge: efficient and accurate network-based 
inference from hundreds of genomes or more

!65
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A Big Data Perspective
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Funding Opportunities  
for My Work

• Computational approaches constitute basic research of interest 
to NSF (IIS, ABI) 

• Wide range of applications of interest to different funding 
agencies, including: 

- The role of introgression in the spread of pesticide resistance 
in wild mice, with applications to personalized warfarin 
therapy (NIH) 

- The role of horizontal gene transfer in the spread of antibiotic 
resistance in bacteria (NIH) 

- Bacterial genomics (DOE) 

- Hybridization in plants (USDA)
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Summary
• I have created: 

- new iterative divide-and-conquer techniques, which were used 
to develop methods for fast and accurate inference of 
alignments and trees from large-scale data sets, and 

- PhyloNet-HMM, a new inference method utilizing a DAG-based 
stochastic model, which is capable of disentangling “vertical” 
and “horizontal” evolution. 

• My future research directions include: 

- developing divide-and-conquer methods for fast and accurate 
analysis of non-tree-like evolution using large-scale genomic 
data sets, and 

- synthesizing evolutionary analysis with interactomic and other 
functional analyses.
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Questions?
• My website:                                                        

http://www.cs.rice.edu/~kl23  

• Nakhleh lab website:                                          
http://bioinfo.cs.rice.edu 

• Warnow lab website:                                         
http://www.cs.utexas.edu/~phylo
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