Scalable Virtual Data
Structures

Sushil Jajodia, George Mason University
Witold Litwin, Université Paris Dauphine
Thomas Schwarz, SJ, Universidad Catdlica del Uruguay

SDDS

e Scalable Distributed Data Structures

* Developed in the 90s

e [H* (Litwin, Neimat, Schneider), RP* (Litwin,
Neimat, Schneider), Search Trees (di Pasquale
& Nardelli, Kroll & Widmayer), DDH (Devine),

 Key-based access to large data sets in time
O(1)

 Key-value pairs
e Scan operation

Di Pasquale, Adriano, and Enrico Nardelli. "Scalable Distributed Data Structures: A Survey." In WDAS, pp. 87-111. 2000.

SDDS

e SDDS
 No central components (on typical access path)
o Store records in buckets
* Split buckets to accommodate growth
» With high / saciable availability versions

SDDS

o LH*: SDDS based on linear hashing
 Records stored in buckets
* QOriginally m buckets
* Buckets split in fixed order
e O0,1,..., m-1:0,1,..., m-1, m, ...2m-1:0, 1,
* (Global file state: level L, spht pointer s

SDDS

 Addressing:
 Based on extensible hash functions
 Example (with M initial number of buckets):
hi(c) = c¢ (mod M) - 2°

 Bucket address calculated from key using level |
and split pointer s

a := h;(c)
if a < s then a := h;11(c)

SDDS

e Clients do not necessarily know the file state, they
know an image of the file state

e Same Is true for buckets
 Key-based query:
* Clients use their file state image to find the
bucket where record iIs
* They can be wrong

* A bucket uses its image of the file state to see
whether a request from a client is directed to a
record that it has. If not, then it forwards

SDDS

* All requests reach the correct bucket with at most
two additional forwards

e Clients never make the same mistake twice:

e |t arequest is forwarded, the correct bucket
sends an image-adjustment message so that the
client has the correct file state

* Active clients commit few addressing mistakes
e |f they commit one, in general only one forward

SDDS

e | H* allows scans:

e Client sends request to all buckets it knows
together with its image

 Buckets can determine whether they need to
forward a scan request to other buckets

SDDS

* [ake home:
e Data structure is autonomous from clients
* Adjusts to growth (and shrinking)
 Manages failure tolerance
 Hides complexity from clients

What do we want

* Organize calculation in the cloud in the same way

e Data structure that distributes brute force work
over as many nodes as needed

e |S autonomous
e |s scalable

* Paradigm is the scan operation in an SDDS

What do we want

* Cloud resources
e are fungible and easily obtained
e suffer a high rate of failure
* provides various levels of service
e are cheap in comparison with programming effort

* push limits of brute force calculation by 2 or 3
orders of decadic magnitude

SVDS

e Scalable Virtual Data Structures

e Extend SDDS principles to brute-force computing
INn the cloud

A scan operation where records are virtual

Secret Sharing with Noised
Share

 Back-up scheme for key S (a) S = s, @ s,

« Key is broken into two shares

« Escrow agency stores one share and) S - s Jel.
th e hiﬂt .

e Escrow agency can recover by using
a cloud to invert the hint

e Size of the noised share space and
speed of hashing algorithm controls
the complexity of the operation

« Costs of share recovery too high for
eSCrow service to precompute and
low enough to obtain share in an
emergency

Noised Share Space Hint: hash(S,)

Jajodia, Sushil, Witold Litwin, and Thomas Schwarz. "Key Recovery Using Noised Secret Sharing with Discounts over Large Clouds." In Social
Computing (SocialCom), 2013 International Conference on, pp. 700-707. IEEE, 2013.

Jajodia, Sushil, and Witold Litwin. "Recoverable encryption through a noised secret over a large cloud." In Transactions on Large-Scale Data-and
Knowledge-Centered Systems IX, pp. 42-64. Springer Berlin Heidelberg, 2013.

SVDS

e Solving generic optimization problems
* using brute-force
* |In a cloud environment

* Need data structure that
* |s scalable
e distributes load efficiently
* manages nodes autonomously
e provides failure tolerance

SVDS

 Examples
* |nverting hashes

'he classical 0-1 knapsack problem: maximize a
inear function subject to a linear constraints

'he traveling salesman problem: minimize the

sum of edge values of a roundtrip through all the
nodes of a graph

nteger linear programming with general

constraint and objective functions
3SAT

Search Space

)

— Mapping =

SVDS

Node

Node

Node

Node

Node

Node

Node

Result-

Agglomeration

<

Termination
Bounding

Data Structure

Slice of
Search
Space

SVDS

Node
Generate Scan / Agalomorate
record Evaluate 99

} Report = SVDS

\

/

Feedback

users

SVDS

interacts
Coordinator
initializes / receives result
Node Node Node
Node Node Node Node Node
Scalable Distributed Virtual Data Structure
Node Node Node Node
Node Node Node

SVDS

e Structures
 LH* Assignment
e |nitial phase

e Coordinator estimates conservatively number
of nodes M

 Each assigned node checks its capacity

e Splits if its load is larger than its capacity
 Agglomeration phase

* Nodes report to their parents

* |nitial nodes report to coordinator

SVDS

e Structures based on range partitioning
* Organize nodes in a B+-tree.
* | eaf nodes organizes group of worker nodes

B+ tree SVDS
() .

-y, () (D Leaf Node .\ () (D - (_J
JOo00On doOobo Otdoodo oUOoooDo oodoooo doob otoobo goooo otoodo

Worker nodes

SVDS

e Structures based on range partitioning

Initial assignment:

« Coordinator assigns leaf node leaders and generates
communication structure of interior leaves.

e | eaf nodes have between k and 2k-1 nodes
* | eaf node leader assigns load according to capacity

o |f capacity Is not sufficient, try to shitt load to left or
right neighbor (rotation)

* |t necessary, requests additional worker nodes
* |t number of worker nodes is larger than 2k, split

SVDS

e Structures based on range partitioning
» [ailure Tolerance

o Every worker node reports partial results of slices to
all other nodes Iin the same group

* | eader detects tailure based on outstanding reports

e | eader failure is detected in the same way and
eads to election of a new leader

* Failed node is replaced

« Already reported results do not need to be
regenerated

» Provides tolerance against k-1 failures

SVDS

 Changes in load
e |f load lowers:
e redistribute load internally to free nodes
* {ry rotates

e place freed nodes into a global pool as
substitutes for failed nodes

e |f load increases
e redistribute load internally
* {ry rotates
e grow leaf node by additional worker node

SVDS

e Structures based on range partitioning
* Final agglomeration uses internal tree structure

* Logarithmic delay -> scalable only within
reason

* Use tree structure for partial agglomeration to
provide bounds

SVDS

* Programming:
* User needs to provide:
 Record creation code
e Scan / evaluation code
* Agglomeration code
e Usually trivial

e Scan code can make use of globally already
seen best results

e [nitial load distribution

Leaf nodes of 8

Node capacity between
50% and 150% normal
distributed

~10000 nodes In batch

load distribution
consecutive

capacity estimate
between 1 and 1/2 of
actual expected
capacity

e Appears impressive

SVDS

CoO OO GO OO GO OO GO OO GO 0o O

1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

10000
10000
10000
10000
10000
10000
10000
10000
10000
10000
10000

3.378%
1.380%
0.361%
0.038%
0.006%
0.019%
0.215%
0.941%
9.182%
33.691%
53.549%

+0.004%
+0.001%
+0.0005%
+5-107°%
+8-1075%
+2-107°%
+0.0003%
+0.001%
+0.012%
+0.043%
+0.069%

SVDS

e (Group survival
e 30 minutes work time
* Time between failures 120 minutes
 Replacement in 5 minutes
* (Groups of 4
e >99% survival rate

SVDS

* Practical question
 Assume simple interaction

* User designates agent who obtains new
computing resources

 Pays a start-up fee and otherwise pays per
time-slice

Research Question

Do we need a feedback operation?
 Example:

* 0-1Integer programming problem or O-1
knapsack problem

* Scan code can exclude large parts of the
search space If we already know a good
solution

Conclusions

* Qutlined a tentative paradigm for self-organizing
brute force calculations in the cloud

e Paradigm is SDDS
* Goal is simplicity of MapReduce

