
Scalable Virtual Data
Structures

Sushil Jajodia, George Mason University
Witold Litwin, Université Paris Dauphine

Thomas Schwarz, SJ, Universidad Católica del Uruguay

SDDS
• Scalable Distributed Data Structures

• Developed in the 90s
• LH* (Litwin, Neimat, Schneider), RP* (Litwin,

Neimat, Schneider), Search Trees (di Pasquale
& Nardelli, Kröll & Widmayer), DDH (Devine),
…

• Key-based access to large data sets in time
O(1)
• Key-value pairs
• Scan operation

Di Pasquale, Adriano, and Enrico Nardelli. "Scalable Distributed Data Structures: A Survey." In WDAS, pp. 87-111. 2000.

SDDS
• SDDS

• No central components (on typical access path)
• Store records in buckets
• Split buckets to accommodate growth
• With high / saciable availability versions

SDDS
• LH* : SDDS based on linear hashing

• Records stored in buckets
• Originally m buckets
• Buckets split in fixed order

• 0,1,…,m-1;0,1,…,m-1, m, … 2m-1;0, 1, …
• Global file state: level L, split pointer s

SDDS
• Addressing:

• Based on extensible hash functions
• Example (with M initial number of buckets):

!

!

• Bucket address calculated from key using level i
and split pointer s

hi(c) = c (mod M) · 2i

a := hi(c)

if a < s then a := hi+1(c)

SDDS
• Clients do not necessarily know the file state, they

know an image of the file state
• Same is true for buckets
• Key-based query:

• Clients use their file state image to find the
bucket where record is

• They can be wrong
• A bucket uses its image of the file state to see

whether a request from a client is directed to a
record that it has. If not, then it forwards

SDDS
• All requests reach the correct bucket with at most

two additional forwards
• Clients never make the same mistake twice:

• If a request is forwarded, the correct bucket
sends an image-adjustment message so that the
client has the correct file state

• Active clients commit few addressing mistakes
• If they commit one, in general only one forward

SDDS
• LH* allows scans:

• Client sends request to all buckets it knows
together with its image

• Buckets can determine whether they need to
forward a scan request to other buckets

SDDS
• Take home:

• Data structure is autonomous from clients
• Adjusts to growth (and shrinking)
• Manages failure tolerance
• Hides complexity from clients

What do we want
• Organize calculation in the cloud in the same way

• Data structure that distributes brute force work
over as many nodes as needed

• Is autonomous
• Is scalable

!

• Paradigm is the scan operation in an SDDS

What do we want
• Cloud resources

• are fungible and easily obtained
• suffer a high rate of failure
• provides various levels of service
• are cheap in comparison with programming effort
• push limits of brute force calculation by 2 or 3

orders of decadic magnitude

SVDS
• Scalable Virtual Data Structures
• Extend SDDS principles to brute-force computing

in the cloud
• A scan operation where records are virtual

Secret Sharing with Noised
Share

• Back-up scheme for key S
• Key is broken into two shares
• Escrow agency stores one share and

the hint
• Escrow agency can recover by using

a cloud to invert the hint
• Size of the noised share space and

speed of hashing algorithm controls
the complexity of the operation

• Costs of share recovery too high for
escrow service to precompute and
low enough to obtain share in an
emergency

Jajodia, Sushil, and Witold Litwin. "Recoverable encryption through a noised secret over a large cloud." In Transactions on Large-Scale Data-and
Knowledge-Centered Systems IX, pp. 42-64. Springer Berlin Heidelberg, 2013.

Jajodia, Sushil, Witold Litwin, and Thomas Schwarz. "Key Recovery Using Noised Secret Sharing with Discounts over Large Clouds." In Social
Computing (SocialCom), 2013 International Conference on, pp. 700-707. IEEE, 2013.

S = S1 ⊕ S0

S = S1 ⊕
S0

Noised Share Space Hint: hash(S0)

SVDS
• Solving generic optimization problems

• using brute-force
• in a cloud environment

!

• Need data structure that
• is scalable
• distributes load efficiently
• manages nodes autonomously
• provides failure tolerance

SVDS
• Examples

• Inverting hashes
• The classical 0-1 knapsack problem: maximize a

linear function subject to a linear constraints
• The traveling salesman problem: minimize the

sum of edge values of a roundtrip through all the
nodes of a graph

• Integer linear programming with general
constraint and objective functions

• 3SAT

SVDS
Search Space

Node

Node

Node

Node

Node

Node

Mapping Data Structure
Node

…

Result-
Agglomeration

Termination
Bounding

SVDS
Node

Slice of
Search
Space

Generate
record

Scan /
Evaluate Agglomorate

SVDSReport

Feedback

SVDS

Scalable Distributed Virtual Data Structure

Coordinator

users

interacts

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

Node

initializes / receives result

Node

Node

SVDS
• Structures

• LH* Assignment
• Initial phase

• Coordinator estimates conservatively number
of nodes M

• Each assigned node checks its capacity
• Splits if its load is larger than its capacity

• Agglomeration phase
• Nodes report to their parents
• Initial nodes report to coordinator

SVDS
• Structures based on range partitioning

• Organize nodes in a B+-tree.
• Leaf nodes organizes group of worker nodes

B+ tree SVDS

Leaf Node

Worker nodes

SVDS
• Structures based on range partitioning

• Initial assignment:
• Coordinator assigns leaf node leaders and generates

communication structure of interior leaves.
• Leaf nodes have between k and 2k-1 nodes
• Leaf node leader assigns load according to capacity
• If capacity is not sufficient, try to shift load to left or

right neighbor (rotation)
• If necessary, requests additional worker nodes
• If number of worker nodes is larger than 2k, split

SVDS
• Structures based on range partitioning

• Failure Tolerance
• Every worker node reports partial results of slices to

all other nodes in the same group
• Leader detects failure based on outstanding reports
• Leader failure is detected in the same way and

leads to election of a new leader
• Failed node is replaced
• Already reported results do not need to be

regenerated
• Provides tolerance against k-1 failures

SVDS
• Changes in load

• If load lowers:
• redistribute load internally to free nodes
• try rotates
• place freed nodes into a global pool as

substitutes for failed nodes
• If load increases

• redistribute load internally
• try rotates
• grow leaf node by additional worker node

SVDS
• Structures based on range partitioning

• Final agglomeration uses internal tree structure
• Logarithmic delay -> scalable only within

reason
• Use tree structure for partial agglomeration to

provide bounds

SVDS
• Programming:

• User needs to provide:
• Record creation code
• Scan / evaluation code
• Agglomeration code

• Usually trivial
• Scan code can make use of globally already

seen best results

SVDS
• Initial load distribution

• Leaf nodes of 8
• Node capacity between

50% and 150% normal
distributed

• ~10000 nodes in batch
• load distribution

consecutive
• capacity estimate

between 1 and 1/2 of
actual expected
capacity

• Appears impressive

8 1 10000 3.378% ±0.004%
8 1.1 10000 1.380% ±0.001%
8 1.2 10000 0.361% ±0.0005%
8 1.3 10000 0.038% ±5 · 10�5%
8 1.4 10000 0.006% ±8 · 10�6%
8 1.5 10000 0.019% ±2 · 10�5%
8 1.6 10000 0.215% ±0.0003%
8 1.7 10000 0.941% ±0.001%
8 1.8 10000 9.182% ±0.012%
8 1.9 10000 33.691% ±0.043%
8 2.0 10000 53.549% ±0.069%

SVDS
• Group survival

• 30 minutes work time
• Time between failures 120 minutes
• Replacement in 5 minutes
• Groups of 4
• >99% survival rate

SVDS
• Practical question

• Assume simple interaction
• User designates agent who obtains new

computing resources
• Pays a start-up fee and otherwise pays per

time-slice

Research Question
• Do we need a feedback operation?

• Example:
• 0-1 integer programming problem or 0-1

knapsack problem
• Scan code can exclude large parts of the

search space if we already know a good
solution

Conclusions
• Outlined a tentative paradigm for self-organizing

brute force calculations in the cloud
• Paradigm is SDDS
• Goal is simplicity of MapReduce

