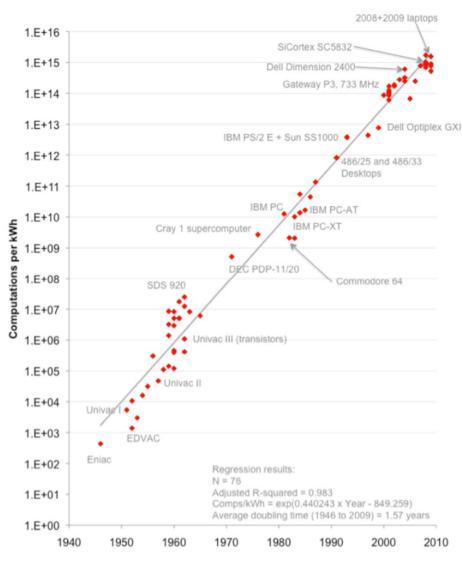


Energy Efficient Computing

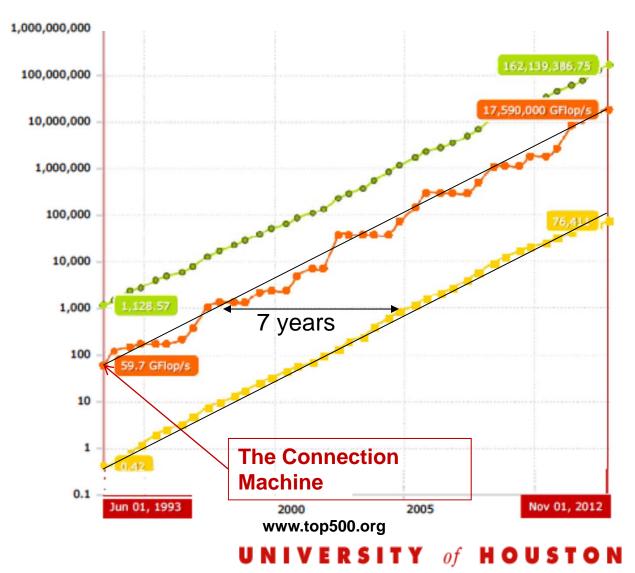
Lennart Johnsson
Advanced Computing Research Lab

What we do?


- Work with various vendors to enhance/advance architectures and platforms for HPC
- Validation of designs through energy efficiency and performance benchmarks
- Develop algorithms and software tools

Why is energy efficiency important?

Energy efficiency evolution


Energy efficiency doubling every 18.84 months on average measured as computation/kWh

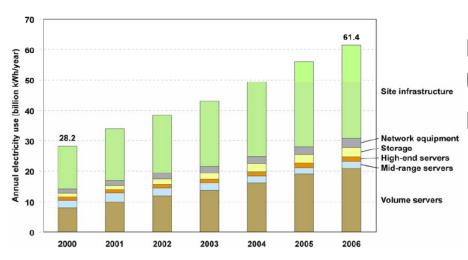
Source: Assessing in the Trends in the Electrical Efficiency of Computation over Time, J.G. Koomey, S. Berard, M. Sanchez, H. Wong, Intel, August 17, 2009, http://download.intel.com/pressroom/pdf/computertrendsrelease.pdf

UNIVERSITY of HOUSTON

Top500 system performance evolution

Performance doubling period on average:

No 1 - 13.64 months


No 500 - 12.90 months

The Gap

The energy efficiency improvement as determined by Koomey does not match the performance growth of HPC systems as measured by the Top500 list

The Gap indicates a growth rate in energy consumption for HPC systems of about 20%/yr.

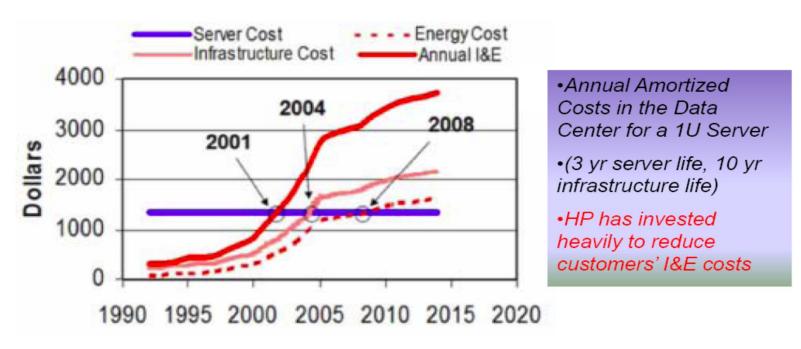
	2000		2006	2000 - 2006	
End use component	Electricity use	%	Electricity use	%	electricity use
	(billion kWh)	Total	(billion kWh)	Total	CAGR
Site infrastructure	14.1	50%	30.7	50%	14%
Network equipment	1.4	5%	3.0	5%	14%
Storage	1.1	4%	3.2	5%	20%
High-end servers	1.1	4%	1.5	2%	5%
Mid-range servers	2.5	9%	2.2	4%	-2%
Volume servers	8.0	29%	20.9	34%	17%
Total	28.2		61.4		14%

EPA study projections: 14% - 17%/yr

Uptime Institute projections: 20%/yr

PDC experience: 20%/yr

Report to Congress on Server and Data Center Energy Efficiency", Public Law 109-431, U.S Environmental Protection Agency, Energy Star Program, August 2, 2007, http://www.energystar.gov/ia/partners/prod_development/downloads/EPA_Datacenter_Report_Congress_Final1.pdf


"Findings on Data Center Energy Consumption Growth May Already Exceed EPA's Prediction Through 2010!", K. G. Brill, The Uptime Institute, 2008, http://uptimeinstitute.org/content/view/155/147

Evolution of Data Center Energy Costs (US)

The Cost to Power & Cool a Server Has Exceeded the Cost of the Server...

Source: Belady, C., 2007, "In the Data Center, Power and Cooling Costs More than IT Equipment it Supports", Electronics Cooling Magazine (Feb issue).

Source: Tahir Cader, Energy Efficiency in HPC – An Industry Perspective, High Speed Computing, April 27 – 30, 2009

Exa-scale Data Centre Challenges

DOE E3 Report: Extrapolation of existing design trends to Exascale in

2016 Estimate: 130 MW

DARPA Study: More detailed assessment of component technologies

Estimate: 20 MW just for memory

alone, 60 MW aggregate

extrapolated from current design

trends

The current approach is not sustainable!

More holistic approach is needed!

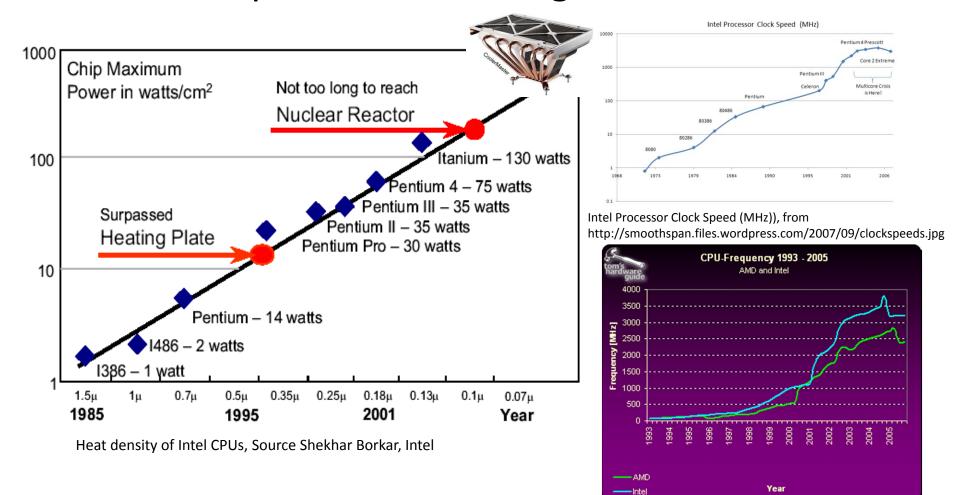
Rule of thumb: 1 MW = \$1M/yr in electricity cost

A large data center (Google, Microsoft, Facebook,) consumes 100+ MW!

UNIVERSITY of HOUSTON

Source: http://alaskaconservationsolutions.com/acs/images/stories/docs/AkCS_current.ppt

An inefficient truth ICT impact on CO₂ emissions*


- It is estimated that the ICT industry alone produces CO₂ emissions that is equivalent to the carbon output of the entire aviation industry. Direct emissions of Internet and ICT amounts to 2-3% of world emissions and is expected to grow to 6+% by the end of the decade
- ICT emissions growth fastest of any sector in society; expected to double every 4 to 6 years with current approaches
- One small computer server generates as much carbon dioxide as a SUV with a fuel efficiency of 15 miles per gallon

*An Inefficient Tuth: http://www.globalactionplan.org.uk/event_detail.aspx?eid=2696e0e0-28fe-4121-bd36-3670c02eda49

Despite remarkable transistor energy efficiency improvement CPUs got hotter

http://www.tomshardware.com/reviews/mother-cpu-charts-2005,1175.html

How to improve energy efficiency?

How to improve energy efficiency?

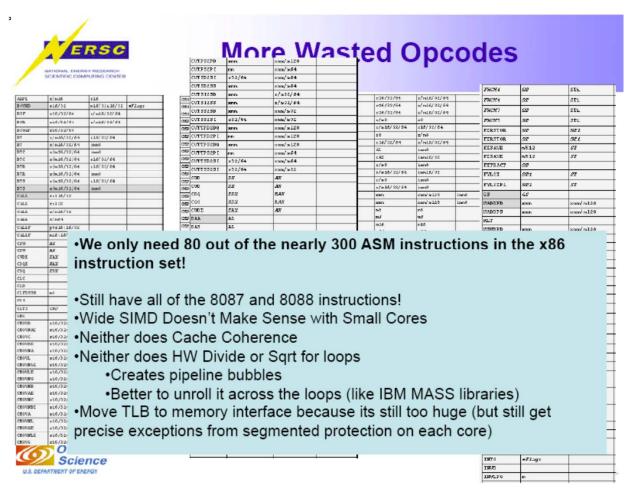
- Reduce energy consumption
- Energy recovery

What type of Architecture?

Reducing Waste

Mark Horowitz 2007: "Years of research in lowpower embedded computing have shown only one design technique to reduce power: <u>reduce waste</u>."

Seymour Cray 1977: "Don't put anything in to a supercomputer that isn't necessary."

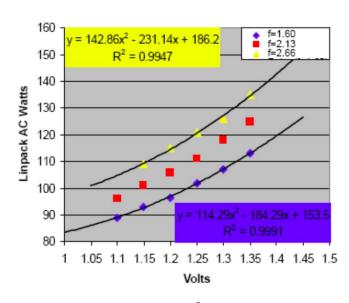


Exascale Computing Technology Challenges, John Shalf
National Energy Research Supercomputing Center, Lawrence Berkeley National Laboratory
ScicomP / SP-XXL 16, San Francisco, May 12, 2010

UNIVERSITY of HOUSTON

What type of Architecture?

Exascale Computing Technology Challenges, John Shalf
National Energy Research Supercomputing Center, Lawrence Berkeley National Laboratory
ScicomP / SP-XXL 16, San Francisco, May 12, 2010



Energy Consumption

"We are on the Wrong side of a Square Law" Fred Pollack 1999

New goal for CPU design: "Double *Valued Performance* every 18 months, at the same power level", Fred Pollack

Pollack, F (1999). New Microarchitecture Challenges in the Coming Generations of CMOS Process Technologies. Paper presented at the Proceedings of the 32nd Annual IEEE/ACM International Symposium on Microarchitecture, Haifa, Israel.

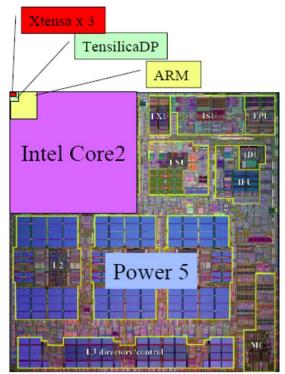
Linpack: $15f(V-0.2)^2+45V+19$ STREAM: $5f(V-0.2)^2+50V+19$

Product	Normalized Performance	Normalized Power	EPI on 65 nm at 1.33 volts (nJ)
i486	1.0	1.0	10
Pentium	2.0	2.7	14
Pentium Pro	3.6	9	24
Pentium 4 (Willamette)	6.0	23	38
Pentium 4 (Cedarmill)	7.9	38	48
Pentium M (Dothan)	5.4	7	15
Core Duo (Yonah)	7.7	8	11

Ed Grochowski, Murali Annavaram Energy per Instruction Trends in Intel® Microprocessors. http://support.intel.co.jp/pressroom/kits/core2duo/pdf/epi-trends-final2.pdf

Energy Cost of Operations

Operation	Energy (pJ)				
64b Floating FMA (2 ops)	100				
64b Integer Add	1				
Write 64b DFF	0.5				
Read 64b Register (64 x 32 bank)	3.5				
Read 64b RAM (64 x 2K)	25				
Read tags (24 x 2K)	8				
Move 64b 1mm	6				
Move 64b 20mm	120				
Move 64b off chip	256				
Read 64b from DRAM	2000				



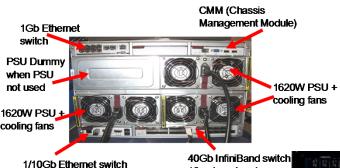
What kind of architecture (core)

How Small is Small

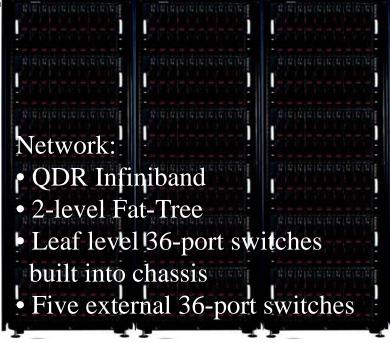
- Power5 (server)
 - 389mm^2
 - 120W@1900MHz
- Intel Core2 sc (laptop)
 - 130mm²
 - 15W@1000MHz
- ARM Cortex A8 (toaster oven)
 - 5mm²
 - 0.8W@800MHz
- Tensilica DP (cell phones)
 - 0.8mm^2
 - 0.09W@600MHz
- Tensilica Xtensa (Cisco Rtr)
 - 0.32mm² for 3!
 - 0.05W@600MHz

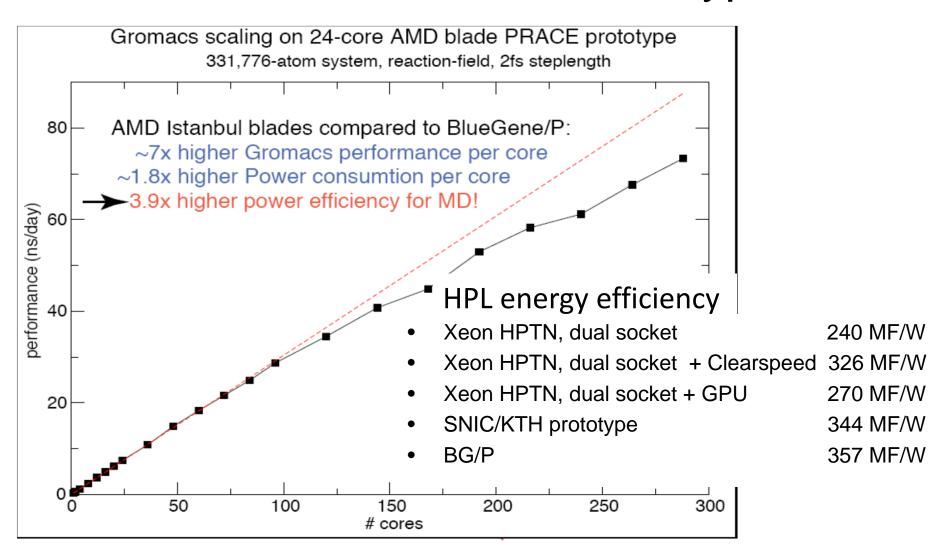
- Cubic power improvement with lower clock rate due to V²F
- Slower clock rates enable use of simpler cores
- Simpler cores use less area (lower leakage) and reduce cost
- Tailor design to application to <u>reduce</u> <u>waste</u>

Office of Science can pack 100x more cores onto a chip and consume 1/20 the power


http://www.csm.ornl.gov/workshops/SOS11/presentations/j_shalf.pdf

SNIC/KTH PRACE Prototype I


18 external ports



- New 4-socket blade with 4 DIMMs per socket supporting PCI-Express Gen 2 x16
- Four 6-core 2.1 GHz 55W ADP AMD Istanbul CPUs, 32GB/node
- 10-blade in a 7U chassis with 36-port QDR IB switch, new efficient power supplies.
- 2TF/chassis, 12 TF/rack, 30 kW (6 x 4.8)
- 180 nodes, 4320 cores, full bisection QDR IB interconnect

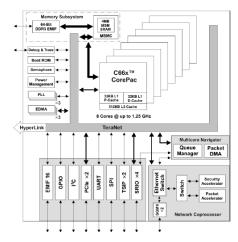
SNIC/KTH/PRACE Prototype I

Nominal Energy Efficiency of Mobile CPUs, x86 CPUs and GPUs

ARM Cortex- 9		А	TON	V	AMD	12-	core	e Intel 6-core			ATI 9370			
Cores	W	GF/W	Cores	W	GF/W	Cores	W	GF/W	Cores	W	GF/W	Cores	W	GF/W
4	~2	~0.5	2	2+	~0.5	12	115	~0.9	6	130	~0.6	1600	225	~2.3

	nVidia Fermi			S320C	6678	IBMBO				•	rSpeed CX700	
Cores	W	GFAW	Cores	W	GF/W	Cores	W	GF/W	Cores	W	GF/W	
512	225	~2.2	8	4	~ 15	16	55	3.7	192	10	~10	

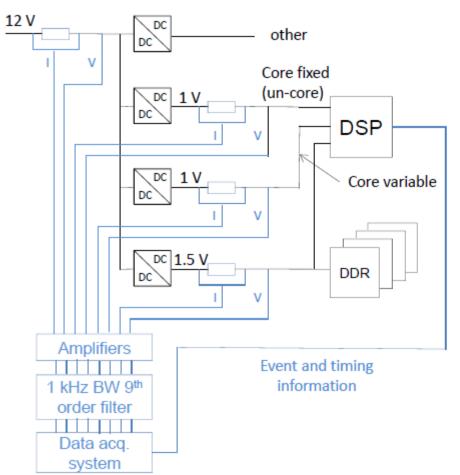

Very approximate estimates!!

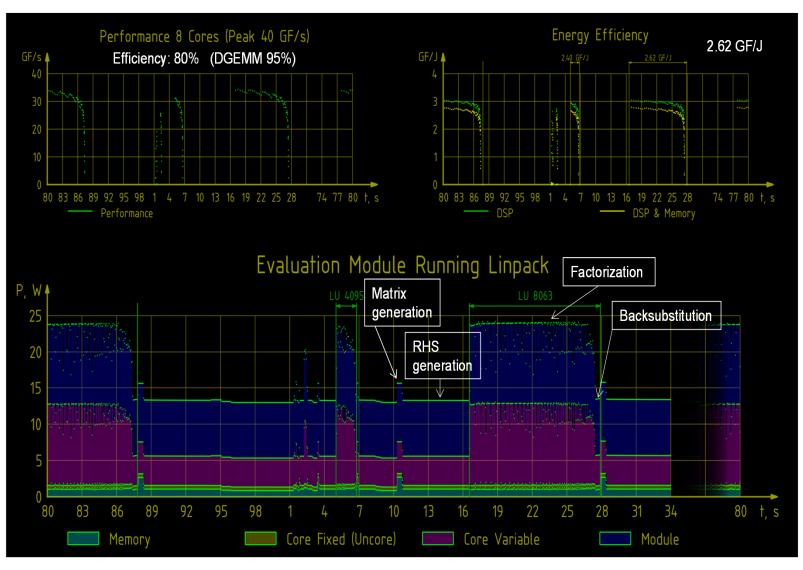

KTH/SNIC/PRACE Prototype II

UNIVERSITY of HOUSTON

KTH/SNIC/PRACE DSP HPC node

Target: 15 – 20W 32 GB 2.5 GF/W Linpack




Instrumentation of the C6678 Module

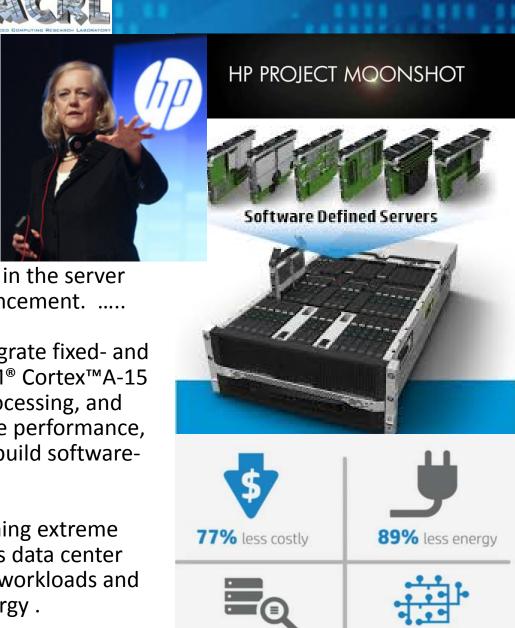
- Four differential channels for Current
- Four differential channels for Voltage
- Sampling rate 125 kHz, 125/8 kHz per channel
- Accuracy better than 1%

Linpack on TI 6678 EVM

UNIVERSITY of HOUSTON

DSP HPL Intermediate Results

Size	GF/s	Eff. %	Cores(W)	Mem (W)	Other (W)	Total (W)	Cores+Mem (MF/J)	Total (MF/J)
127	1.3	4	6.0	1.26	6.87	14.08	176	90
255	2.8	9	4.8	0.99	5.17	10.95	493	260
511	6.0	19	6.4	1.12	6.58	14.09	796	425
1023	11.3	35	8.0	1.19	7.65	15.86	1230	672
2047	16.9	53	9.2	1.10	8.13	18.40	1649	920
4095	22.0	69	10.3	1.03	8.70	20.03	1939	1097
8063	25.6	80	11.2	0.99	9.20	21.39	2097	1195

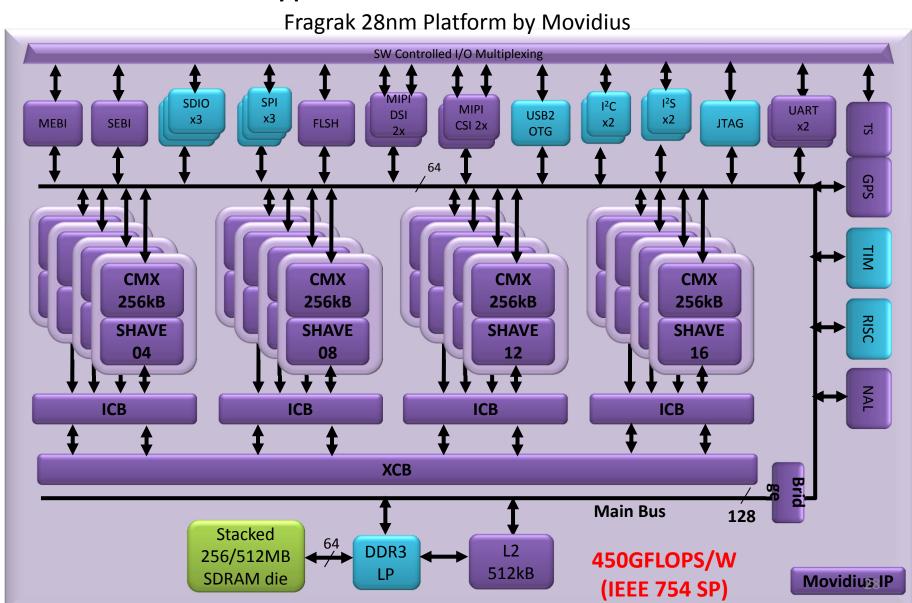

Imagine the impact... TI's KeyStone SoC + HP Moonshot

2013-04-19. Last week, market leader
Hewlett Packard announced a huge change in the server landscape with its recent Moonshot announcement.

..... "TI's KeyStone II-based SoCs, which integrate fixed- and floating- point DSP cores with multiple ARM® Cortex™A-15 MPCore processors, packet and security processing, and high speed interconnect, give customers the performance, scalability and programmability needed to build software-defined servers."

HP Project Moonshot is dedicated to designing extreme low-energy server technologies. HP expects data center efficiencies to reach new heights for select workloads and applications, consuming up to 89% less energy.

We are pursuing HPC cartridges with HP and TI

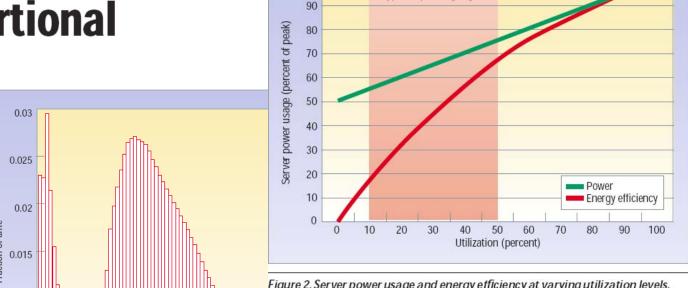


80% less space

97% less complex

Next Prototype – Enahanced Mobile Video CPU

Dynamic Voltage and Frequency Scaling


The Case for Energy-Proportional Computing

0.01

0.005

Luiz André Barroso and Urs Hölzle
Google

Figure 1. Average CPU utilization of more than 5,000 servers during a six-month period. Servers are rarely completely idle and seldom operate near their maximum utilization, instead operating most of the time at between 10 and 50 percent of their maximum utilization levels.

100

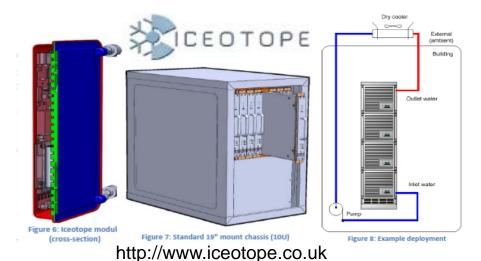
Figure 2. Server power usage and energy efficiency at varying utilization levels, from idle to peak performance. Even an energy-efficient server still consumes about half its full power when doing virtually no work.

Typical operating region

"The Case for Energy-Proportional Computing", Luiz André Barroso, Urs Hölzle, *IEEE Computer*, vol. 40 (2007). http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//pubs/archive/33387.pdf

CPU utilization

PDC Energy Recovery Project



Liquid Cooling - Submersion

- Server: Supermicro H8QG6 with four 6274 AMD Opteron processors with 128GB of LV DDR3 8GB DIMMs.
- Evaluation still in progress;
 currently operated with coolant
 SUPERMICRO C and water

UNIVERSITY of HOUSTON

New Students Welcome!!!