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What is Agent-based Modeling? What is Agent-based Modeling?

o Examples of the representative-agent models:
@ ABM has been considered as a bottom-up approach modeling

behaviors of a group of agents, rather than a representative
agent, in a system.

o Profit maximization, utility maximization, or cost/loss
minimization...

. . ) @ Methods of optimization:
@ The representative-agent hypothesis allows for greater ease in

solution procedures o (1) First-order condition - unconstrained optimization

. e (2) Lagrangian multiplier - constrained optimization
o It is easier to find the equilibrium (relatively...). o (3) Dynamic optimization
o This is usually called the analytical optimization .

o (a) Bellman equation (over discrete time), and
@ (b) Hamiltonian multiplier (over continuous time).
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What is Agent-based Modeling? What is Agent-based Modeling?

@ One important element of ABM is that it allows the possibility
of agents’ interactions in micro levels with the assumption of
bounded-rationality or imperfect information.

o LeBaron and Tesfatsion (2008, 246): “Potentially important
real-world factors such as subsistence needs, incomplete
markets, imperfect competition, inside money, strategic
behavioral interactions, and open-ended learning that
tremendously complicate analytical formulations are typically
not incorporated”

@ Given agents' heterogenous characteristics and their
interactions at the micro level, we can simulate the system and
observe changes in the macro level over time according to the
system-simulated data.
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Applications of ABM Applications of ABM

e Poli. Sci. (Bendor, Diermeier and Ting, APSR 2003; Fowler,

JOP 2006) e Economics
e BDT (2003): o Econ. Growth - Beckenbach, et al. (JEE, 2012) - Novelty
o A computational model by assuming that voters are adaptively creating behavior and sectoral growth effects.
rational — voters learn to vote or to stay home in a form of o Market Structure - Alemdar and Sirakaya (JEDC, 2003) -
trial-and-error. Computation of Stackelberg Equilibria.
o Voters are reinforced to repeat an action (e.g., vote) in the o Policy Making - Arifovic, Bullard and Kostyshyna (EJ, 2013)
future given a successful outcome today. - The effects of social learning in a monetary policy context.

@ The turnout rate is substantially higher than the predictions in

rational choice models.
condition for stable equilibrium.
o Fowler (2096)' ) ) ) ) o However, they show that it is not necessary for convergence to
o He revises the BDT model by including habitual voting REE minimum state variable (MSV) equilibrium under genetic

behavior.. _ algorithm learning.
o Fowler finds his behavioral model is a better fit to the same

data BDT use.
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@ The Taylor Principle is widely regarded as the necessary
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QOutline Background
Genetic Algorithm - The Learning Mechanism
© Background @ The genetic algorithm (GA), developed by John Holland
(1970), is considered one of the evolutionary algorithms
@ Genetic Algorithm - The Mechanism of Learning inspired by natural evolution with a core concept of “survival of
the fittest”.

@ The GA describes the evolutionary process of a population of
genetic individuals with heterogeneous beliefs in response to
the rules of nature.
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This Presentation This Presentation

Human Chromosomes - 23 pairs J

We introduce Arifovic (1994) as an example to investigate if the macro-level
stability condition (the cobweb theorem) is necessary for a stable cobweb

economy under GA.
We would also like to see how to apply the genetic algorithm on a simple < 7( )(
1 2 3 4 L

economic model.
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This Presentation

We introduce Arifovic (1994) as an example to investigate if the macro-level
stability condition (the cobweb theorem) is necessary for a stable cobweb
economy under GA.

We would also like to see how to apply the genetic algorithm on a simple
economic model.

Important terms:

| A

@ Reproduction, Mutation, and Crossover

o Reproduction: An individual chromosome is copied from the
previous population to a new population.

e Mutation: One or more gene within an individual chromosome
changes value randomly.

o Crossover: Two randomly drawn chromosomes exchange parts
of their genes.
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Genetic Mutation J
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Genetic Crossover J
Crossover
Homologous Chromosome Recombinant
chromosomes crossover chromosomes
aligned
A A a a A
B b b B
C C c c C
Non-recombinant
chromosomes
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Computational GA - Genes, Chromosomes, Population Computational GA - Mutation

The computational GA Environment can be presented as follows: )
The mutation which occurs when one or more gene within an individual
chromosome changes value randomly: Agents may change their strategies
Co1: [0010100100010101110101010010101010¢1p100101010 | Ch romosome suddenly through innovations.

cez: 0@1019913a01@1a111@10101@@101@1@10a1@100191éiﬁ’"‘** Genes

C01: 0010100100010101110101010010101010010100101010
C03: |0010100100010101110101010010101010010100101010

Ce4: (0010100109010101110101610010101012010100101010 Co1: 001010010 [0] 01010111010 [1] 010010101010010100101010
C85: |0010100100010101110101010010101010010100101010

C06: |0010100100010101110101010010101010010100101010 | _ o111 2t 4 o Co1: 001010010 [1] 01010111010 [0] 010010101010010100101010
Ce7: |0A10100100010101110101010010101010010100101010 FepULalbLon

Ce8: |0A10100100010101110101010010101010010100101010
C09: |0A10100100010101110101010010101010010100101010
C10: |0A10100100012101110101010010101010010100101010
C11: |0@10100100012101110101010010101010010100101010
C12: |0@10100100010101110101010010101010010100101010
C13: |0@10100100010101110101010010101010010100101010
C14: |0010100100010101110101010010101010010100101010
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Computational GA - Crossover Computational GA - Operational Flowchart

. I
The crossover which occurs when two randomly drawn chromosomes exchange ( sertati=o
parts of their genes: Agents work with others to innovate or develop a new
population
Evaluation based on

the fitness function
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EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm EITM Summer Institute (2015)

j Mutation on the new
population at t+7

Evolutionary Dynamics: Genetic Algorithm



Cobweb Model Cobweb Model
Arifovic (1994): Cobweb Model under GA The GA Learning Arifovic (1994): Cobweb Model under GA The GA Learning
Conclusions Conclusions

Outline The cobweb model- An Introduction

@ It is a classic model which illustrates the dynamic process of
prices in agricultural markets (Kaldor, 1934).

@ Due to a lag between planting and harvesting, farmers cannot
adjust the amount of agricultural output immediately to fulfill
the demand in the market.

© Arifovic (1994): Cobweb Model under GA
@ Cobweb Model

@ As a result, farmers make their planting decisions today based
on the predicted (or forecasted) price of the agricultural
product in the next period.

o If farmers expect the price is high in the next period, they

would like to plant more today to make more money
tomorrow, and vice versa. (The Law of Supply.)
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The cobweb model- An Introduction The cobweb model- An Introduction

@ What would be the planting decision for the farmers at

@ Assuming that farmers “forecast” the price in the next period t=27
based on the price they observe today, that is, Pf,; = Px. o At time t = 2, since they observe the today's price is low,
o If the current price level P; is high (and is higher than the they would expect the price will also be low in the next period

(t = 3). Therefore, they decide to plant less today...
o At time t = 3, since all farmers again are doing the exact same
thing, the total output level turns out to be very low this time.
o At time t = 1, farmers would be very happy to plant more Qs,t=3 < Qq,t=3 (shortage!). Therefore, the price jumps up!
today so that they will have more output (Q:—2) which can be ' ’ -
sold at the high price they expect in the next period.

equilibrium price P*, which is assumed to be unknown for the
farmers). It can be written as: P;—1 > P*.

@ What would be the planting decision for the farmers at

e At time t = 2, since all farmers did the same in period 1, there t =3 now?
are too much output available, which creates a “surplus” in the e At time t = 3, since they observe the today’s price is now high
market, the price drops sharply at t =2 due to the excess again, they would expect the price will also be high in the next
supply, and it goes below the equilibrium: P;—y < P* < Py1. period (t =4). Therefore, they decide to plant more today...

@ This story keeps going...
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The cobweb model- An Introduction The cobweb model - an mathematical illustration

e Arifovic (1994) assumes each firm i chooses a production level
i+ to maximize its expected profit 7.
@ The cost function for firm i is:

1
Cie = aqj + Ebmq,-zt, where a,b > 0.

@ Given the expected price of the good Py at time t, firm i is
maximizing the following profit function:

1
7 = P{qir — Cit (qit) = P{ qir — aqir — Ebmqizt.

@ The first order condition for each firm i is:
D P¢—a

e P¢ —a—bmgj=0= qjp = ——.
Q3 Q1 Q2 Q £~ 97 OMait it bm
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The cobweb model - an mathematical illustration

The Cobweb Theorem and Other Expectations Formations

@ Assuming all firms are identical so that g;; = g; Vi, the @ The dynamics of the price level:
aggregate supply in the market is: vb+a0 O
i e, Pt:T—EPf.
Qt:Zqit:mqt: tb ) (1)
i=1 o According to Cobweb Theorem, the model is stable if /b < 1,
where m = number of firms in the market. that is, 8 < b. However, the model is unstable if 8/b > 1, that
@ Assuming that the market demand is a linear function: is, > b.
@ Arifovic discusses three types of expectations formations:
Pt =y—-0Q:, (2)

@ Static expectations (i.e., Pf = P;_1):
o The model is stable only if 6/b < 1.
@ Simple adaptive expectations (P = %Zg;é Ps):
@ The model is stable in both cases (Carlson, 1968).
y—P: P°—a P, = Yb+ a6 B gPe © Least squares learning (P = B:P:_1, B: = OLS coefficient):

where Q; =Y. qit.
@ In equilibrium where (1)=(2), we can derive the following law
of motion for the price level:

t- . . .
0 b b b @ The model is stable only if 6/b < 1 (Bray and Savin, 1986).
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The Cobweb Theorem and Simulation The Cobweb Theorem and Simulation - Static

Static expectations (i.e., Pf = P;_1):

1.2
Stable Case Unstable Case o
Parameters (% < 1) (% > 1) N
¥ 2.184 2.296
[4 0.0152 0.0168 105
a 0 0 : . . . . . . . ) .
b 0.016 0.016 (Stable Case: % < 1) P
m 6 6 .
P~ 1.12 1.12
Q*=mq* 70 70 N
Table 12.1: Cobweb Model Parameters o

. 9 3 1000 200 3000 400 SEIIU E[‘lﬂ 7[‘|[| B[‘lﬂ Q[‘lﬂ 1000
Unstable Case: 7 >1
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The Cobweb Theorem and Simulation - Adaptive

Simple adaptive expectations (P§ = 1 ¥t°0 Po):

(Stable Case % < 1) ‘s T o a0 @m0 w0 0 @0 w0 oo

, , , , , . , L L
100 200 300 400 S00 600 700 @00 900
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The Cobweb Theorem and GA
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The Cobweb Theorem and Simulation - Least Squares

Least squares learning (Pf = B¢Pt—1):

(Stable Case: ¢ < 1)

Unstable Case: 7
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WHAT ABOUT THE GA LEARNING?

DOES THE COBWEB THEOREM HOLD UNDER THE GA?

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

© Arifovic (1994): Cobweb Model under GA

@ The GA Learning
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The Basic GA and Arifovic's New GA Operator New GA Operator - Arifovic (1991, 1994)

@ Arifovic (1994) simulates the cobweb model based on three ® The Rules of Election:

basic genetic operators in the GA simulations: e Both offspring chromosomes are elected to be in the new

population at time t+41 if E; (V( icgf:slpring)) >V (Charet).

) o o However, if only one new chromosome has a higher fitness

@ She also introduces a new operator, called election, in the value than their parents, the one with lower value will not
simulations. enter the new population, but one of the parents with a higher

@ Election is an operator to “examine” the fitness of newly values stays in the new population. .
o If both new chromosomes have lower values than their parents

generated (or offspring) chromosomes and then compare them offspring parent .
with their parent chromosomes. E: (V (Cit+1 )) < V(") they cannot enter but their
parents stay in the new population.

e (1) reproduction, (2) mutation, and (3) crossover.
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GA Learning Parameters Running Simulations - MATLAB

° Ecitor - AUsers/mesong/DropboxTeaching_02/EITM Houston/EITM UH 2014/MATLAB Sims/ga. o1
File Edit Debug Desktop Window Help File Edit Text Go Cell Tools Debug Desktop Window Help
o (2 ]| in = B Bl- 8B

21 © Current Folder: /Users/mcswong/Documents/MATLAB N e S s

Stable Case Unstable Case

Parameters (% < 1) (% > 1) imand Window
o 2.184 2.206
) 0.0152 0.0168
¢ 0 0 MATLAB® ™"
b 0.016 0.016 et
m 6 6 rassseons
P 112 112 posiipah

Q*=mq* 70 70

Table 12.1: Cobweb Model Parameters

Set 1 2 3 4 5 6 7 8
Crossover rate: s 0.6 0.6 0.75 0.75 0.9 0.9 0.3 0.3
Mutation rate: g 0.0033 0.033 0.0033 0.033 0.0033 0.033 0.0033 0.033

Table 12.2: Crossover and Mutation Rates
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The GA Simulations - Stable Case (6/b < 1)
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The GA Simulations - Unstable Case (6/b > 1)

Setl Sets Set1 Sets
(crossover rate = 0.6, mutation rate = 0.0033) (crossover rate = 0.9, mutation rate = 0.0033) (crossover rate = 0.6, mutation rate = 0.0033) (crossover rate = 0.9, mutation rate = 0.0033)
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e Arifovic (1994) introduces the GA procedure as an alternative
learning mechanism.

© Arifovic (1994): Cobweb Model under GA @ This alternative learning mechanism mimics social behavior:

e imitation, communication, experiment, and examination.

@ Arifovic uses the GA simulated data to compare with the data

@ Conclusions generated in human-subject experiments (Wellford, 1989).

e In an unstable case of the cobweb model, the divergent
patterns do not happen under both GA learning and
human-subject experiments.

e Price and quantity fluctuate around the equilibrium in basic
GA learning and human-subject experiments.
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A Simple GA Exercise MATLA.B Gl A Simple GA Exercise MATLA.B Gl
Simulations Simulations

Outline Profit Maximization

@ Profit function: T =pxqg—c(q).

@ Demand: p=a— bg.

@ Supply (cost function): ¢ =d+ eq.

© Maximizing profit: maxq, 7w = (a— bq)g—(d+eq).

O A Simple GA Exercise © Optimal level of output: g* = (a—e)/2b.
@ A Simple Profit Maximization Problem

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm
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A Simple GA Exercise MATLA.B Gl A Simple GA Exercise MATLA.B Gl
Simulations Simulations

Outline Notations under the GA

@ Chromosome C; consists of a set of 0 and 1, where L is the
length of a chromosome (the number of genes).

e B™((;) =2 —1 represents the maximum numerical value of
a chromosome with the length L.

o For example, if L =10, the maximum value of a chromosome:

B(1111111111) = 2% — 1 =1023.

@ A Simple GA Exercise @ We can use the B operator to compute a numerical value of a
chromosome (e.g., C; =0100101110) :

o The GA Operators B(0100101110) = 0x2°4+1x284+0x2"+0x 2%+
Ix224+0x2%+1x23+1x2%2+
1x2'+0x2°=302.
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MATLAB Codes

A Simple GA Exercise Simulations

A Simple GA Exercise

Notations under the GA Notations under the GA

© Assume that there are M =8 genetic individuals. For L =10, @ According to the problem of profit maximization, if a = 200,
we can generate an initial genetic population Py in an M x L b=4, and e = 40, then g* = 20.

matrix (that is, 8 x 10 matrix): . .
( ) @ In this case, the maximum value of a chromosome can be too

® For example: large for this problem (B™# = 1023).
0100101110 ) _ _
1110101010 @ We can define a maximum economic value for a chromosomes
0101110100 V (C;) based on the following value function:
P 0100001010 max
0~ 1110101000 V(C) = grmax * B(G),
0101101101
1100101010 where V (C;) € [0, U] for B(C;) € [0,B™], and U™ is
0100011100 the maximum economic value in the problem.
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A Simple Profit Maximization Problem
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MATLAB Codes

A Simple GA Exercise Simulations

A Simple GA Exercise

Notations under the GA Notations under the GA

@ Is firm i doing a good job? We need to evaluate firm /i using a

@ An economic value for a chromosomes V (C;) based on the fitness function F ().
following value function: @ The profit function is used as the fitness function in this case:
ymax F(C,):TL'(V(C,))
V(C) = grmax ¥ B(C). =m(qi) = (a—bq;) qi — (d + eq;).

@ For example, given the maximum output level is U™#* = 100, ® In this case,

and C; =0100101110 (i.e., B(C;) = 302), we can calculate the F(C)=r(V(C))
output level for firm i: = 7(29.52) = (200 — 4(29.52)) (29.52) — (50 + 40 (29.52))
100 — 1187.48.
gi = V(C) = —r x 302 = 29.52 ~ 30.

1023 @ The maximum profit is (for gx = 20):

max *
FM = m(q*) = m(20) = 1550.
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A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

The GA Operators

Reproduction = Evolutionary Dynamics

@ Reproduction is a genetic operator where an individual
chromosome is copied from the previous population to a new
population.

@ The probability of being drawn for each chromosome is
calculated based on the fitness value.

o Higher fitness value = higher probability of being drawn to the
new population.

@ The relative fitness function is:
R(Cue) = o (Ci)
Zm:l F(Cm,f)
where Y ;cy R(Gi¢) = 1.
@ The relative fitness value R(C; ;) gives us the probability
chromosome i is copied to the new population_at time t+ 1.
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A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

The GA Operators

Crossover

@ A crossover point will be randomly chosen to separate each
chromosome into two sub-strings.

@ Two “offspring” chromosomes will be formed by swapping the
right-sided parents’ substrings with probability x.

C01: 0010100100010101110101010010101010010100101010

C02: 1010010101001010101001010001000101011110101000

C01: |0010100100010101110101010010 101010010100101010
C02: 1010010101001010101001010001 0001010111101010001|

C01: 0010100100010101110101010010 000101011110101000

C02: 1010010101001010101001010001 101010010100101010
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A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

The GA Operators

Reproduction

e What if F(C; ;) is negative for some firm i? (a negative
profit?)

@ Goldberg (1989) proposes a scaled relative fitness function:

F(C,'7t)—|-A _ F(C;,t)—FA
YM [F(Cme)+ Al EM_ F(Cpme)+ MA’

S (Ci,t) =

where A is a constant such that A> —minc,ep, F(Ci ).
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A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

The GA Operators

Crossover

Assuming that there are M = 6 individuals in the population
(each chromosome has 20 genes) :

[6x20] matrix

Col: 10010100100110101010
CP2: 10101010010001101100
CP3: 01101100101000110110
CP4: 11011001010001110100
CP5: 10110010111101100101
Co6: 10110101111011001010
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A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

A Simple GA Exercise

The GA Operators

Crossover

The GA Operators

Crossover

Therefore, there are 20 — 1 = 19 possible positions for crossover.

We randomly pick a position for each pair of chromosomes. Given k¥ = 0.3, the position for the 1st pair is 8, the 2nd pair is 3,

and the 3rd is 0.

Break the population into 3 groups.

Randomly pick a position between Position 1 and Position 19 Col: 100101001001 10101010 [Position 8]

C01: 10010100100110101010 Ce2: 101910109100_01101100

C02: 10101010010001101100 C03: 01101100101000110_110 [Position 3]

C03: 01101100101000110110 Ce4: 11011001010001110_100
co4: 11011001010001110100 C05: 10110010111101100101 [Position @]
Co5: 1011e010111101100101 Ce6: 101101@1111011001010

Co6: 10110101111011001010
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A Simple Profit Maximization Problem A Simple Profit Maximization Problem
The GA Operators The GA Operators

WPSUILAS Coxitas A Simple GA Exercise MPILAS Coxtes

Simulations Simulations

The GA Operators The GA Operators

Crossover Mutation

A Simple GA Exercise

This is a new population after crossover.

@ Every gene within a chromosome has a small probability, u,

Col: 100101001001_01101100 [Position 8] changing in value, independent of other positions.
CP2: 101010100100_10101010

(03: 01101100101000110_100 [Position 3] C01: 0010100100010101110101010010101010010100101010

Ce4: 11011001010001110_110 Co1: 001010010 |0| 01010111010 1] 010010101010010100101010

Ce5: 10110010111101100101_ [Position @] - NO CROSSOVER Col: 001010010 [1] 01010111010 [0] 010010101010010100101010
C06: 10110101111011001010_
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A Simple Profit Maximization Problem A Simple Profit Maximization Problem
The GA Operators The GA Operators
MATLAB Codes . . MATLAB Codes
. . A Simple GA Exercise o o
Simulations Simulations

A Simple GA Exercise

QOutline Defining Parameter Values

6 $Initial Population Parameters:
7 tind number of agents(chromosomes) in a population
a tbit ! r of genes in each agent(chromosome)

9 ¥Umax the upper bound of the real economic values
I value for the scaled relative fi
lity of Crossover

ty of Mutation

of generations(simulations)

ness

i (1994)
19 - ma = 0.0033; %Arifovic (1994)
20 - time = 500;

e A Slmp|e GA Exercise 22 $Profit function parameters

a - bg

] d + eg

Profit function: profit (a=bg)g - (d+eq)
Optimal level of output: g* (a-e)/2b
200;

= 4;

= 50;

= 40;

31 - gstar = (a-e)/(2*b);
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o MATLAB Codes o

[+ P = - R
n

A Simple Profit Maximization Problem A Simple Profit Maximization Problem
The GA Operators The GA Operators
MATLAB Codes A Simple GA Exercise MATLAB Codes

A Simple GA Exercise Simulations Simulations

Creating an Initial Population Converting Binary Value into Numerical Value

) . . NPT a7 tCalculate the real value of h chromosome: "BC"
66 tValue I‘ancL:Lm:ﬁ and Definitions | gne;n’i?; vatue ob each chromeosome
67 - Bmax = (2 ." bit) = 1; 89 - for i=1l:n
68 _ m = ind; 90 - dmZti,l]:mZti,l].'tn-i];
69 - n = bit; :;- en
T0 93 - BC = ones{m,1l);

~ . . . .o " 94 - for i=1:

71 tCenerate the Initial PDgﬂlaLlD]"J. gen 95 — o ;Ctil,‘.llj=genti,=] *+ m2; %Converting Binary # to Decimal # for each i
72 - gen = rand(m,n); 96 end
73 - for i=l:m 97
74 - for j=l:n o F |
75 - if gen(i,j)<.5; or example,
76 - gen{i,j)=0; 9 8 - 6
77 - else B(0100101110) = 0x2°+1x2°4+0x2"+0x2°+
78 - gen{i,j)=1;

79 _ and Ix224+0x2%+1x23+1x2%2+

80 - end 1 0 __
a1 - end 1x2"+0x2"=302.
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A Simple Profit Maximization Problem A Simple Profit Maximization Problem
The GA Operators The GA Operators
MATLAB Codes A Simple GA Exercise MATLAB Codes

A Simple GA Exercise Simulations Simulations

Notations under the GA Notations under the GA

@ Is firm i doing a good job? We need to evaluate firm /i using a

@ An economic value for a chromosomes V (C;) based on the fitness function F ().

following value function: @ The profit function is used as the fitness function in this case:
ymax F(C,):TL'(V(C,))
V(CI)ZWXB(CI)- =n(q;) = (a—bqi)qi—(d+eq;).

@ For example, given the maximum output level is U™#* = 100, ® In this case,

and C; =0100101110 (i.e., B(C;) = 302), we can calculate the F(C)=r(V(C))
output level for firm i: = 7(29.52) = (200 — 4(29.52)) (29.52) — (50 + 40 (29.52))
100 — 1187.48.
G =V (G) = 1555 % 302=29.52 % 30,

@ The maximum profit is (for gx = 20):
FM* = m(q*) = m(20) = 1550.

A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

A Simple GA Exercise

The GA Operators

Reproduction = Evolutionary Dynamics

The GA Operators

Reproduction

@ Reproduction is a genetic operator where an individual - Wiy i the code Eor Aeprodacticn
H H H H 123 - norm_fit = SC
chromosome is copied from the previous population to a new Sl o b astaeisc))
1 125 - sum fit = 0;

populatlon. . . . 126 - for i=l:length{8C)

@ The probability of being drawn for each chromosome is 127 - sum_fit = sum_fit + norm fit(i)
i 128 - index = find(selected<sum fit)
calculated based on the fitness value. 129 - Selected(index) = irones(size(index))
130 - en
o Higher fitness value = higher probability of being drawn to the 131 - gen = gen(selected,:)

new population. . - .
. . Goldberg (1989) proposes a scaled relative fitness function:
@ The relative fitness function is:

R(Cia) = — T (Ci) F(CO)+A  F(Go)+A

—_— S(Cit)= = ,
YH L F (Coe) () = T (F(Coe) 4 Al T71 F (Cone) + MIA

where Y ;cy R(Gi¢) = 1.
@ The relative fitness value R(C; ;) gives us the probability
chromosome i is copied to the new population_at time t+ 1.
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where A is a constant such that A> —minc.ep, F(Ci ).



A Simple GA Exercise

The GA Operators

Reproduction

>> norm_fit = SC
norm_fit =

L1283
1230
1182
0000
1276
0785
0780
1271
0927
1266

coocooooRoQ

>> selected

selected =

-

[ e N =

(=
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A Simple GA Exercise

The GA Operators

Crossover

»> rand(size(gen,1)/2,1)
ans =
0.6378
0.3878
0.8372
0.7663
0.1256
»> gize(gen,2)-1

ans =

31

A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

»> geil(rand({size(gen,1l)/2,1)*(size(gen,2)=-1))

ans =

3
21
12

4
20
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A Simple GA Exercise

The GA Operators

Crossover

A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

133 his is the code for Crossover (Point & Pairwise)

134 ze({gen,1l) ind individual

135 %size(gen,2) bit number of genes

136 - sites = ceil(rand(size(gen,1)/2,1)*(size(gen,2)=1))

137 - sites = sites.*(rand(size(sites))<kappa)

138 - for i = l:length(sites)

139 - newgen{[2%i-1 2%i],:) = [gen{[2%i-1 2*i],l:sites(i))
140 gen([2%i 2%i-1],sites(i)+l:size(gen,2))]
141 - end

142 - gen=newgen

143
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A Simple GA Exercise

The GA Operators

Mutation

A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

144 $This is the code for Mutation

145 - mutated = find(rand(size(gen))<mu)
1486 - newgen = gen

147 - newgen (mutated) = 1|-gentmutated]
148 - gen=newgen;

149 - ngen=newgen;

150
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A Simple Profit Maximization Problem A Simple Profit Maximization Problem
The GA Operators The GA Operators

MATLAB Codes MATLAB Codes

A Simple GA Exercise Simulations A Simple GA Exercise Simulations

The GA Operators Outline

Mutation

mutated =

newgen =

HOODOOO oMM
R -]
CoOHHOO KON
R - -
CooOoHOOD oMM
coHocorHRroOoaM
CoHHaeR e
R e -]

@ A Simple GA Exercise

newgen =

1 0
1 1
1 1
o 1
0 1
0 0
o 1
o 1
0 1
1 0

EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm EITM Summer Institute (2015) Evolutionary Dynamics: Genetic Algorithm

@ Simulations

COHHOOREON
- -
COCOoOHOO KKK
corooHHoOCOM
SorHoaRPaH
-]

A Simple Profit Maximization Problem A Simple Profit Maximization Problem
The GA Operators The GA Operators

WPAUILAS Coxitas A Simple GA Exercise P Coxtes

Simulations Simulations

The Basic GA Simulations The Basic GA Simulations

The Output Level over time

A Simple GA Exercise

27+
@ Market Parameters: 261
e Demand: a =200, and b = 400. 251
e Supply: d =50, and e = 40.
o Optimal output: g* = 20. 5 24)
> |
o GA Parameters: 8%
=
e M =200 (200 genetic agents) £ 21
o L =16, therefore B™3* = 65535. @]
e U™ =50 (maximum output g™ = 50) .
o k = 0.3 (probability of crossover) 19
o 1 =0.0033 (probability of mutation) 18-
e t =500 (500 generations) - ‘ ‘ ‘ . ‘ ‘ ‘ . ‘ ‘
0 50 100 150 200 250 300 350 400 450 500

Time
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A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

A Simple GA Exercise

The Basic GA Simulations

A Simple Profit Maximization Problem
The GA Operators

MATLAB Codes

Simulations

The Augmented GA Simulations

A Simple GA Exercise

The Standard Deviation of Output Level over time

14 '

12

10

Standard deviation

0 L L L L L L L Il 1
0 50 100 150 200 250 300 350 400 450
Time
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The Output Level over time

Oulput level over time
201

20.05 —W

20|

Qutputievel

19.95 -

19.9 -

19.85 I I I I I I I
0 10 20 30 40 50 60 70

Time

A Simple Profit Maximization Problem
The GA Operators
MATLAB Codes

A Simple GA Exercise Simulations

The Augmented GA Simulations

The Standard Deviation of Output Level over time

Standard deviation of output level over time
T T T T T

Standard devation of outputlevel

- N W A D~ @ @
T
|

o

Time
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Concluding Remarks

Concluding Remarks

e Why do we use the GA (or ABM in general) for political
science / economics research??

e Some models are mathematically intractable (we cannot find a
closed-form equilibrium).

o No strong assumptions imposed (such as, efficient markets,
rational agents, representative agent hypothesis).

o It allows non-linearity in a theoretical model.

o It is relatively easier to capture equilibrium (equilibria) in a
multi-national, multi-sector model.
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Concluding Remarks

Concluding Remarks

Learn GA Learning? Learn GA Learning?

Genetic Algorithms in Search, Optimization, and Machine Learning (David E. Goldberg, Learning in Economics: Analysis and Application of Genetic Algorithms (Thomas
1989) Riechmann, 2001)

CONTRIBUTIONS TO ECONOMICS

Thomas Riechmann

Learning
in Economics

Al and Application
Algorithms

DAVID E. GOLDBERG
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Concluding Remarks Concluding Remarks

Learn GA Learning? Concluding Remarks

Adaptive Learning by Genetic Algorithms: Analytical Results and Applications to
Economic Models (Herbert Dawid, 2012)

HERBERT DAWID

Thank You.

e Questions?
and Applications
te Economic

Moudels
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Concluding Remarks

Sources of Figures

@ Evolutionary figure: http://mme.uwaterloo.ca/~fslien/ga/ga.html

@ Human chromosome:
http://ghr.nlm.nih.gov/handbook/illustrations/chromosomes.jpg

@ Genetic mutation:
http://farm3.static.flickr.com/2350/1583336323 33661151a2 o.jpg

@ Genetic crossover:
http://cnx.org/content/m45471 /latest/Figure_08 03 06.jpg
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