Lecture Notes

1 Alesina and Rosenthal (1995)

• The model of economic growth is based on an expectations augmented aggregate supply curve:

$$\hat{y}_t = \hat{y}^n + \gamma \left(\pi_t - \pi_t^e \right) + \epsilon_t,$$

where $\hat{y}_t = \text{economic growth rate at time } t$, $\hat{y}^n = \text{natural rate of economic growth}$, $\pi_t = \text{inflation rate at time } t$.

• The growth model is extended by including an extra component, called competence, which cannot be observed by voters. Therefore,

$$\epsilon_t = \eta_t + \xi_t$$

where η_t = the level of competence at time t, and ξ_t = stochastic shocks which are beyond administration control.

• Assume that competence follows an MA(1) process:

$$\eta_t = \mu_t + \rho \mu_{t-1},$$

where $\mu_t \sim \mathrm{iid}(0, \sigma_\mu^2)$.

• We also assume that voters predict inflation with no systematic errors: $\pi_t^e = \pi_t$. As a result, economic growth performance is associated with voters' uncertainty:

$$\hat{y}_t - \hat{y}^n = \epsilon_t = \eta_t + \xi_t.$$

If the actual economic growth rate (\hat{y}_t) is greater than its natural rate (\hat{y}^n) , that is, $\hat{y}_t > \hat{y}^n$. Therefore, $\epsilon_t > 0$, which implies that $\eta_t + \xi_t > 0$.

• However, voters are faced with uncertainty in distinguishing the incumbent's competence (η_t) from the stochastic economic shocks (ξ_t) . Since competence can persist, voters use this property for making forecasts:

$$\hat{y}_t - \hat{y}^n = \epsilon_t = \eta_t + \xi_t
\Rightarrow \epsilon_t = \mu_t + \rho \mu_{t-1} + \xi_t
\Rightarrow \hat{y}_t - \hat{y}^n - \rho \mu_{t-1} = \mu_t + \xi_t
\Rightarrow \mu_t + \xi_t = \hat{y}_t - \hat{y}^n - \rho \mu_{t-1}.$$

• The previous equation suggests that the votes observe the composite shock $(\mu_t + \xi_t)$ based on the observable variables: \hat{y}_t, \hat{y}^n , and μ_{t-1} . Therefore, voters optimally forecast the level of competence for the next period based on the observable factors:

$$\begin{split} E_{t}\left(\eta_{+1}\right) &= E_{t}\left(\mu_{t+1} + \rho\mu_{t}\right) \\ &= E_{t}\left(\mu_{t+1}\right) + \rho E\left(\mu_{t} \left| \hat{y}_{t} - \hat{y}^{n} - \rho\mu_{t-1}\right.\right) \\ &= E_{t}\left(\mu_{t+1}\right) + \rho E\left(\mu_{t} \left| \mu_{t} + \xi_{t}\right.\right) \\ &= \rho E\left(\mu_{t} \left| \mu_{t} + \xi_{t}\right.\right), \end{split}$$

where $E_t \mu_{t+1} = 0$.

• According to the method of recursive projection, we can show that:

$$E(\mu_t | \mu_t + \xi_t) = \frac{\sigma_{\mu}^2}{\sigma_{\mu}^2 + \sigma_{\xi}^2} (\mu_t + \xi_t). \text{ [WHY?]}$$

Since $\mu_t + \xi_t = \hat{y}_t - \hat{y}^n - \rho \mu_{t-1}$, we have:

$$\begin{split} E_t \eta_{t+1} &= \rho E \left(\mu_t \left| \mu_t + \xi_t \right. \right) \\ &= \rho \frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_\xi^2} \left(\mu_t + \xi_t \right) \\ &= \rho \frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_\xi^2} \left(\hat{y}_t - \hat{y}^n - \rho \mu_{t-1} \right). \end{split}$$

How to derive $E(\mu_t | \mu_t + \xi_t) = \frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_\epsilon^2} (\mu_t + \xi_t)$?

Voters forecast μ_t according to the following linear projection function:

$$E(\mu_t | \mu_t + \xi_t) = P(\mu_t | \mu_t + \xi_t) = a_0 + a_1 (\mu_t + \xi_t),$$

where:

$$a_1 = \frac{cov(\mu_t, \mu_t + \xi_t)}{var(\mu_t + \xi_t)}$$

$$= \frac{E[\mu_t(\mu_t + \xi_t)]}{E[(\mu_t + \xi_t)(\mu_t + \xi_t)]}$$

$$= \frac{\sigma_\mu^2}{\sigma_\mu^2 + \sigma_\varepsilon^2},$$

where $E(\mu_t \xi_t) = 0$; $E(\mu_t \mu_t) = \sigma_{\mu}^2$, and $E(\xi_t \xi_t) = \sigma_{\xi}^2$; and

$$a_0 = E(\mu_t) - a_1 E(\mu_t + \xi_t) = 0,$$

where $E(\mu_t) = E(\xi) = 0$. As a result, we can show that:

$$E(\mu_{t} | \mu_{t} + \xi_{t}) = a_{0} + a_{1} (\mu_{t} + \xi_{t})$$

$$= 0 + \frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2} + \sigma_{\xi}^{2}} (\mu_{t} + \xi_{t})$$

$$= \frac{\sigma_{\mu}^{2}}{\sigma_{\mu}^{2} + \sigma_{\xi}^{2}} (\mu_{t} + \xi_{t}).$$

2 Clarke and Granato (2004)

• Clarke and Granato (2004) present a model with 3 equations:

$$M_t = a_1 M_{t-1} + a_2 E_{t-1} M_t + a_3 F_t + u_{1t}$$
, where $a_1, a_2 > 0$ and $a_3 = 1$ (1)

$$F_t = b_1 F_{t-1} + b_2 A_t + u_{2t} (2)$$

$$A_t = c_1 A_{t-1} + c_2 (M_t - M^*) + c_3 F_{t-1}$$
(3)

Now we plug equation (3) into equation (2), we have:

$$F_{t} = b_{1}F_{t-1} + b_{2}\left[c_{1}A_{t-1} + c_{2}\left(M_{t} - M^{*}\right) + c_{3}F_{t-1}\right] + u_{2t}$$

$$\Rightarrow F_{t} = b_{1}F_{t-1} + b_{2}c_{1}A_{t-1} + b_{2}c_{2}\left(M_{t} - M^{*}\right) + b_{2}c_{3}F_{t-1} + u_{2t}$$

$$\Rightarrow F_{t} = (b_{1} + b_{2}c_{3})F_{t-1} + b_{2}c_{1}A_{t-1} + b_{2}c_{2}\left(M_{t} - M^{*}\right) + u_{2t}$$

$$(4)$$

• Plug equation (4) into equation (1):

$$M_{t} = a_{1}M_{t-1} + a_{2}E_{t-1}M_{t} + F_{t} + u_{1t}$$

$$M_{t} = a_{1}M_{t-1} + a_{2}E_{t-1}M_{t} + \left[(b_{1} + b_{2}c_{3}) F_{t-1} + b_{2}c_{1}A_{t-1} + b_{2}c_{2} \left(M_{t} - M^{*} \right) + u_{2t} \right] + u_{1t}$$

$$M_{t} = a_{1}M_{t-1} + a_{2}E_{t-1}M_{t} + \left(b_{1} + b_{2}c_{3} \right) F_{t-1} + b_{2}c_{1}A_{t-1} + b_{2}c_{2}M_{t} - b_{2}c_{2}M^{*} + u_{2t} + u_{1t}$$

$$(1 - b_{2}c_{2}) M_{t} = a_{1}M_{t-1} + a_{2}E_{t-1}M_{t} + \left(b_{1} + b_{2}c_{3} \right) F_{t-1} + b_{2}c_{1}A_{t-1} - b_{2}c_{2}M^{*} + u_{2t} + u_{1t}$$

$$M_{t} = -\left(\frac{b_{2}c_{2}}{1 - b_{2}c_{2}} \right) M^{*} + \left(\frac{a_{1}}{1 - b_{2}c_{2}} \right) M_{t-1} + \left(\frac{a_{2}}{1 - b_{2}c_{2}} \right) E_{t-1}M_{t} + \left(\frac{b_{2}c_{1}}{1 - b_{2}c_{2}} \right) A_{t-1} + \left(\frac{b_{1} + b_{2}c_{3}}{1 - b_{2}c_{2}} \right) F_{t-1} + \frac{u_{2t} + u_{1t}}{1 - b_{2}c_{2}}$$

$$M_{t} = \Theta_{0} + \Theta_{1}M_{t-1} + \Theta_{2}E_{t-1}M_{t} + \Theta_{3}A_{t-1} + \Theta_{4}F_{t-1} + \epsilon_{t}^{*}, \tag{5}$$

where
$$\Theta_0 = -\left(\frac{b_2c_2}{1-b_2c_2}\right)M^*$$
, $\Theta_1 = \frac{a_1}{1-b_2c_2}$, $\Theta_2 = \frac{a_2}{1-b_2c_2}$, $\Theta_3 = \frac{b_2c_1}{1-b_2c_2}$, $\Theta_4 = \frac{b_1+b_2c_3}{1-b_2c_2}$, and $\epsilon_t^* = \frac{u_{2t}+u_{1t}}{1-b_2c_2}$.

• To solve the rational expectations equilibrium (REE), we first form an expectation of equation (5) at t-1, we have:

$$E_{t-1}M_t = \Theta_0 + \Theta_1 M_{t-1} + \Theta_2 E_{t-1} M_t + \Theta_3 A_{t-1} + \Theta_4 F_{t-1} + E_{t-1} \epsilon_t^*$$

$$\Rightarrow (1 - \Theta_2) E_{t-1}M_t = \Theta_0 + \Theta_1 M_{t-1} + \Theta_3 A_{t-1} + \Theta_4 F_{t-1}$$

$$E_{t-1}M_t = \frac{\Theta_0}{1 - \Theta_2} + \frac{\Theta_1}{1 - \Theta_2} M_{t-1} + \frac{\Theta_3}{1 - \Theta_2} A_{t-1} + \frac{\Theta_4}{1 - \Theta_2} F_{t-1}, \tag{6}$$

where $E_{t-1}\epsilon_t^* = 0$.

• Plug equation (6) into equation (5):

$$\begin{split} M_t &= \Theta_0 + \Theta_1 M_{t-1} + \Theta_2 E_{t-1} M_t + \Theta_3 A_{t-1} + \Theta_4 F_{t-1} + \epsilon_t^* \\ M_t &= \Theta_0 + \Theta_1 M_{t-1} + \Theta_2 \left(\frac{\Theta_0}{1 - \Theta_2} + \frac{\Theta_1}{1 - \Theta_2} M_{t-1} + \frac{\Theta_3}{1 - \Theta_2} A_{t-1} + \frac{\Theta_4}{1 - \Theta_2} F_{t-1} \right) + \\ &\qquad \Theta_3 A_{t-1} + \Theta_4 F_{t-1} + \epsilon_t^* \\ M_t &= \frac{\Theta_0}{1 - \Theta_2} + \frac{\Theta_1}{1 - \Theta_2} M_{t-1} + \frac{\Theta_3}{1 - \Theta_2} A_{t-1} + \frac{\Theta_4}{1 - \Theta_2} F_{t-1} + \epsilon_t^*. \end{split}$$
(7)

• Note that equations (2) and (3) are written as follows:

$$F_t = b_1 F_{t-1} + b_2 A_t + u_{2t},$$

and

$$A_{t} = c_{1}A_{t-1} + c_{2}(M_{t} - M^{*}) + c_{3}F_{t-1}.$$

Take one period backward, we have:

$$F_{t-1} = b_1 F_{t-2} + b_2 A_{t-1} + u_{2t-1}, (8)$$

and

$$A_{t-1} = c_1 A_{t-2} + c_2 \left(M_{t-1} - M^* \right) + c_3 F_{t-2}. \tag{9}$$

Now plug (9) into (8):

$$F_{t-1} = b_1 F_{t-2} + b_2 \left[c_1 A_{t-2} + c_2 \left(M_{t-1} - M^* \right) + c_3 F_{t-2} \right] + u_{2t-1}$$

$$F_{t-1} = \left(b_1 + b_2 c_3 \right) F_{t-2} + b_2 c_1 A_{t-2} + b_2 c_2 M_{t-1} - b_2 c_2 M^* + u_{2t-1}.$$

$$(10)$$

• Now plug equations (9) and (10) into (7):

$$\begin{array}{lcl} M_t & = & \dfrac{\Theta_0}{1-\Theta_2} + \dfrac{\Theta_1}{1-\Theta_2} M_{t-1} + \dfrac{\Theta_3}{1-\Theta_2} \left[c_1 A_{t-2} + c_2 \left(M_{t-1} - M^* \right) + c_3 F_{t-2} \right] + \\ & \dfrac{\Theta_4}{1-\Theta_2} \left[\left(b_1 + b_2 c_3 \right) F_{t-2} + b_2 c_1 A_{t-2} + b_2 c_2 M_{t-1} - b_2 c_2 M^* + u_{2t-1} \right] + \epsilon_t^* \\ M_t & = & \left(\dfrac{\Theta_0}{1-\Theta_2} - \dfrac{\Theta_3}{1-\Theta_2} c_2 - \dfrac{\Theta_4}{1-\Theta_2} b_2 c_2 \right) M^* + \\ & \left(\dfrac{\Theta_1}{1-\Theta_2} + \dfrac{\Theta_3}{1-\Theta_2} c_2 + \dfrac{\Theta_4}{1-\Theta_2} b_2 c_2 \right) M_{t-1} + \\ & \left(\dfrac{\Theta_3}{1-\Theta_2} c_1 + \dfrac{\Theta_4}{1-\Theta_2} b_2 c_1 \right) A_{t-2} + \\ & \left[\dfrac{\Theta_3}{1-\Theta_2} c_3 + \dfrac{\Theta_4}{1-\Theta_2} \left(b_1 + b_2 c_3 \right) \right] F_{t-2} + \\ & \dfrac{\Theta_4}{1-\Theta_2} u_{2t-1} + \epsilon_t^* \\ M_t & = & \Pi_1 + \Pi_2 M_{t-1} + \Pi_3 A_{t-2} + \Pi_4 F_{t-2} + \xi_t'. \end{array}$$

• Therefore, we can see that:

$$\Pi_2 \equiv \frac{\Theta_1}{1 - \Theta_2} + \frac{\Theta_3}{1 - \Theta_2} c_2 + \frac{\Theta_4}{1 - \Theta_2} b_2 c_2$$

$$\begin{split} \Pi_2 &= \frac{a_1/\left(1-b_2c_2\right)}{1-\left[a_2/\left(1-b_2c_2\right)\right]} + \frac{b_2c_1/\left(1-b_2c_2\right)}{1-\left[a_2/\left(1-b_2c_2\right)\right]}c_2 + \frac{\left(b_1+b_2c_3\right)/\left(1-b_2c_2\right)}{1-\left[a_2/\left(1-b_2c_2\right)\right]}b_2c_2 \\ \Pi_2 &= \frac{a_1}{1-b_2c_2-a_2} + \frac{b_2c_1c_2}{1-b_2c_2-a_2} + \frac{\left(b_1+b_2c_3\right)b_2c_2}{1-b_2c_2-a_2} \\ \Pi_2 &= \frac{a_1+b_2c_2\left(c_1+b_1+b_2c_3\right)}{1-b_2c_2-a_2} \\ \Pi_2 &= \left(a_1+b_2c_2\left(c_1+b_1+b_2c_3\right)\right)\left(1-b_2c_2-a_2\right)^{-1}. \end{split}$$

• Take the derivative of Π_2 with respect to c_2 :

$$\begin{array}{lll} \frac{\partial \Pi_2}{\partial c_2} & = & b_2 \left(c_1 + b_1 + b_2 c_3 \right) \left(1 - b_2 c_2 - a_2 \right)^{-1} + \\ & & \left[a_1 + b_2 c_2 \left(c_1 + b_1 + b_2 c_3 \right) \right] \left(-1 \right) \left(1 - b_2 c_2 - a_2 \right)^{-2} \left(-b_2 \right) \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left(c_1 + b_1 + b_2 c_3 \right)}{1 - b_2 c_2 - a_2} + \frac{b_2 \left[a_1 + b_2 c_2 \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left(c_1 + b_1 + b_2 c_3 \right) \left(1 - b_2 c_2 - a_2 \right) + b_2 \left[a_1 + b_2 c_2 \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[\left(c_1 + b_1 + b_2 c_3 \right) \left(1 - b_2 c_2 - a_2 \right) + a_1 + b_2 c_2 \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[\left(c_1 + b_1 + b_2 c_3 \right) \left(1 - b_2 c_2 - a_2 + b_2 c_2 \right) + a_1 \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[\left(c_1 + b_1 + b_2 c_3 \right) \left(1 - a_2 \right) + a_1 \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(c_1 + b_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(a_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(a_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(a_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(a_1 + b_2 c_3 \right) \right]}{\left(1 - b_2 c_2 - a_2 \right)^2} \\ \frac{\partial \Pi_2}{\partial c_2} & = & \frac{b_2 \left[a_1 + \left(1 - a_2 \right) \left(a_1 + b$$

where $A \equiv c_1 + b_1 + b_2 c_3$.