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Overview

▶ Survey experiments: ubiquitous in political science

▶ Manipulation checks: measure which participants received
experimental stimuli

▶ Require compliance/attention to pass

▶ Ideally: estimate causal effects among respondents who
receive both treatment and control stimuli

▶ Survey measurement error: undermines reliability of
manipulation checks

▶ This paper

▶ Sharp bounds for causal effects that account for measurement
error in manipulation checks

▶ New computational method for partial identification +
confidence intervals; generalizes broadly
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Variables

▶ Treatment: Di ∈ {0, 1}

▶ Outcome: Yi ∈ {y1, . . . , yK} (categorical)

▶ Manipulation check/screener: Si ∈ {0, 1}
▶ Compliance/attention: Ai ∈ {0, 1}

▶ Ai = 1 if i exerts enough effort to pass the screener
▶ Ai = 0 otherwise

▶ Crucially, Si is observed but Ai is not!
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Core assumptions

▶ A0: n iid draws from superpopulation.

▶ A1: SUTVA.

Yi = Yi (Di ), Ai = Ai (Di ), Si = Si (Di )

▶ A2: Di randomly assigned.

▶ A3: Known false positive/negative rate.

P[Si (d) = 1 | Ai (d) = 1] = 1

P[Si (d) = 1 | Ai (d) = 0] = αd
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▶ A4: False positive rate does not depend on Y .

P[Si (d) = 1 | Ai (d) = 0,Yi (d) = y ] = αd

▶ A5: Compliance monotonicity. For all i , either

Ai (1) ≥ Ai (0)

or the reverse. [See Lee (2009).]

▶ A6: Fixed compliance/screener.

Ai (1) = Ai (0), Si (1) = Si (0)
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Estimand

▶ Average treatment effect: contaminated by noncompliance

▶ Instead: look at effect among always-compliant stratum:

Ai (1) = 1,Ai (0) = 1

▶ Average treatment effect among always-compliant (ATAC):

ATAC = E [Yi (1)− Yi (0) | Ai (0) = 1,Ai (1) = 1]

▶ Not point identifiable: observe either Ai (0) or Ai (1), not both

▶ If Si = Ai always, then ATAC is boundable (Lee 2009)

▶ No method for bounding ATAC when Si ̸= Ai
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Computational method

▶ Parameterize joint distribution of all potential outcomes

π∗(a0, a1, s0, s1, j , k) = P[Ai (0) = a0,Ai (1) = a1,Si (0) = s0,

Si (1) = s1,Yi (0) = yj ,Yi (1) = yk ]

e.g., if K = 2, then π∗ is 64-dimensional when flattened

▶ Assumptions A1-A6 imply linear constraints on vec(π∗)

▶ ATAC = τ(π) for a linear-fractional function of τ

▶ First goal: calculate estimated bounds (EB) which ignore
sampling error

▶ Theorem 1: EB = solution to two linear programs (min/max)

▶ R calculation: about 1 second; Newton-like convergence
guarantees (c.f. Duarte et al. 2024)
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Inference

▶ Second goal: confidence intervals (CI) for the ATAC

▶ Existing optimization-based CI methods have an overcoverage
problem (Duarte et al. 2024)—too wide

▶ Theorem 2: derive confidence intervals with desired
asymptotic coverage rate

▶ Suprisingly general result: seems to apply to any
optimization-based confience intervals!

▶ Caveat: requires a differentiability condition

▶ Theorem 3: CI = solution to two second-order cone programs

▶ Similar speed and convergence guarantees as EB/linear
program (use similar convex optimization algorithms)
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Reanalysis of Dancygier and Wiedemann (2024)

▶ Survey experiment on support for expropriating corporate
landlords.

▶ Control: paragraph about how broccoli is healthy

▶ Treatment: paragraph about how corporate landlords are
buying homes as a financial investment

▶ Manipulation check: 4-options multiple choice confirming
what they read

▶ Treatment increased average expropriation support (60% →
69%) and decreased check passage (78% → 74%)

▶ What’s the effect among always-compliant respondents?
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False positive rate sensitivity (A1-A5)
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Conclusion

▶ Developed a new method for bounding causal effects in survey
experiments with noncompliance or inattention.

▶ Fast computational method for computing bounds; established
confidence interval coverage rate.

▶ Demonstrated the method’s utility with a reanalysis of
Dancygier and Wiedemann (2024).

▶ Future work: Generate different types of assumptions to
achieve tighter bounds without requiring compliance
monotonicity.

▶ Future work: Apply the computational method to other causal
inference settings.
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