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Abstract

We provide an equilibrium framework for modeling the behavior of an agent
who holds a simplified view of a dynamic optimization problem. The agent faces
a Markov decision process, where a transition probability function determines
the evolution of a state variable as a function of the previous state and the
agent’s action. The agent is uncertain about the true transition function and
has a prior over a set of possible transition functions; this set reflects the agent’s
(possibly simplified) view of her environment and may not contain the true
function. We define an equilibrium concept and provide conditions under which
it characterizes steady-state behavior when the agent updates her beliefs using

Bayes’ rule.
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1 Introduction

Early interest on studying the behavior of agents who hold misspecified views of the
world (e.g., Arrow and Green [1973], Kirman [1975], Sobel [1984], Kagel and Levin
[1986|, Nyarko [1991], Sargent [1999]|) has recently been renewed by the work of
Piccione and Rubinstein [2003|, Jehiel [2005], Eyster and Rabin [2005|, Jehiel and Koessler
[2008|, Esponda [2008], Esponda and Pouzo (2016, 2017, 2019), Eyster and Piccione
[2013|, Spiegler (2013, 2016, 2017), Fudenberg, Romanyuk, and Strack [2017|, Hei-
dhues, Kgszegi and Strack (2018a, 2018b), and Eliaz and Spiegler [forthcoming],
among others. There are least two reasons for this interest. First, it is natural for
agents to be uncertain about their complex environment and to represent this un-
certainty with parsimonious parametric models that are likely to be misspecified.
Second, endowing agents with misspecified models can explain how certain biases in
behavior arise endogenously as a function of the primitives.

The previously cited papers focus on problems that are intrinsically “static” in the
sense that they can be viewed as repetitions of static problems where the only link
between periods arises because the agent is learning the parameters of the model.
Yet dynamic decision problems, where an agent chooses an action that affects a state
variable (other than a belief), are ubiquitous in economics. The goal of this paper
is to provide a tractable framework to study dynamic settings where the agent has a
possibly misspecified model.

We study a Markov decision process where a single agent chooses actions at dis-
crete time intervals. A transition probability function describes how the agent’s action
and the current state affects next period’s state. The current payoff is a function of
states and actions. As is well known, this problem can be represented recursively via

the following Bellman equation,

V(s) = max (s, ) +6/V(s’)Q(ds’ | 5,2), (1)
z€l(s) S
where s is the current state, = is the agent’s choice variable from a feasible set I'(s), ™
is the payoff function, @) is the transition probability function, and ¢ is the discount
factor.
In realistic environments, the agent often has to deal with two difficult issues:

a potentially large state space (i.e., the curse of dimensionality) and uncertainty



about the transition probability function. For example, equation (1) may represent
a dynamic savings problem where the agent decides every period what fraction = of
her wealth to save. The state variable s is a vector that includes wealth as well as
any variable that helps predict returns to savings, such as previous interest rates and
other macroeconomic indicators. The function @) represents the return function, and,
naturally, the agent may not even be sure which indicators are relevant in predicting
returns. In such a complex environment, it is reasonable to expect the agent to
simplify the problem and focus only on certain variables by solving a version of
equation (1) where @ is replaced by a “simpler” transition function.

The main objective of this paper is to provide a framework for modeling the be-
havior of an agent who holds a simplified view of the dynamic optimization problem
represented by equation (1). Our approach is to postulate that the agent is endowed
with a family of transition probability functions, {Qy : 6 € ©}, indexed by a param-
eter space ©. This family captures both the uncertainty of the agent as well as the
way in which she simplifies the problem. In particular, the agent’s model is misspec-
ified whenever the true model @ is not in {Qy : 6 € ©}. For example, the agent may
incorrectly believe that certain macroeconomic indicators are irrelevant for predicting
returns, but she may still be uncertain as to the predictive value of the remaining
indicators. Each period, the agent observes the current state, chooses an action, and
then updates her belief using Bayes’ rule when the new state is realized.

Our main contribution is to introduce an equilibrium concept to describe the
steady-states of the agent’s learning dynamics when the agent is a Bayesian learner
with a misspecified model. To characterize the agent’s steady-state behavior, the
modeler simply solves problem (1), except that the true transition function @ is
replaced by the agent’s perception of this transition, @, = Jo Qop*(df), where p*
is interpreted as the agent’s equilibrium belief over all models in ©. As any other
equilibrium object, the equilibrium belief p* is determined endogenously. In addition
to gaining tractability, we focus on equilibrium behavior because it is standard in
economics and allows us to relate our findings to previous work and also because we are
interested in the long-run implications of model misspecification and not necessarily
on mistakes that arise from limited opportunities to learn.

We say that a probability distribution over state-action pairs is a Berk-Nash equi-
librium if it satisfies two requirements. First, there exists a belief over © such that,

for any state-action pair in the support of the equilibrium distribution, the agent’s



action given the state is optimal given the belief, and, moreover, the belief puts prob-
ability one on the set of parameter values that are “closest” to the true transition
probability function over state-action pairs. The notion of “closest” is formalized by a
weighted version of Kullback-Leibler divergence, where the weights in turn depend on
the equilibrium distribution. Second, the agent’s equilibrium behavior gives rise to
a particular Markov process over states and actions, and we require the equilibrium
distribution to be a stationary distribution of this process.

We then illustrate how our equilibrium concept can help analyze environments that
seemed previously intractable using three examples. First, we consider the problem of
an agent facing a dynamic effort task who fails to account that his performance today
is affected by his performance yesterday. Second, we consider a stochastic growth
model where the agent incorrectly assumes that productivity and preference shocks
are independent. Finally, we consider a production problem with Markov shocks and
uncertain cost where the decision maker has an incorrect parametric specification of
the cost function.

We conclude by investigating one possible foundation for our equilibrium concept.
Consider the case where the agent has a prior belief 1 over © that is updated using
Bayes’ rule based on the current state, the agent’s decision, and the state observed
next period, ¢’ = B(s,z, s, 1), where B denotes the Bayesian operator and p' is the
posterior belief. One convenience of Bayesian updating is that we can represent this
problem recursively via the following Bellman equation, where the state variable now

also includes the agent’s belief:

W(s,u)—maXWs:B +5//Ws,uQ9ds|sx) (d9), (2)

z€l'(s)

where ' = B(s,z, s, u) is the updated belief.

In this environment, a natural question is whether the limiting distribution of
state-action pairs corresponds to a Berk-Nash equilibrium. In the static case, where
there is no state variable s, the answer has been shown to be yes under fairly mild
assumptions (see Esponda and Pouzo [2016]). A remarkable feature of this result,
which is shared by other equilibrium foundations, such as the foundation for Nash and
self-confirming equilibrium (e.g., Fudenberg and Kreps [1993|, Fudenberg and Kreps
[1995]), is that the modeler does not need to tackle the problem of belief updating in

order to characterize limiting behavior, but rather applies a fixed equilibrium belief.



In the dynamic environments that we study in this paper, the answer to our ques-
tion is more nuanced. We show that the answer is positive if one of three conditions
is satisfied. The first condition is that the environment is subjectively static, in the
sense that the the agent believes (possibly incorrectly) that the current state does not
affect the future state. The second condition is that the environment is identified, a
condition that essentially requires that the agent’s belief is uniquely determined irre-
spective of the agent’s action.! The third condition is that all states are visited with
positive probability in the steady state. At least one of these three conditions is typi-
cally satisfied in applications. We show by example that if neither of these conditions
is satisfied, then steady states cannot generally be characterized by an equilibrium
approach where the agent holds a fixed, equilibrium belief, and this is true even if
the agent’s model is correctly specified. In contrast, the modeler is forced to consider
the more complicated problem with belief updating, as represented by equation (2).
As we explain in Section 5, the difference in results between the static and dynamic
settings arises from the fact that updating a belief can never decrease the agent’s con-
tinuation value in the static case (because of a nonnegative value of experimentation),
but it may decrease it when both the belief and another state variable change.

A few other people have also studied the problem of misspecified learning by eco-
nomic agents outside the traditional static setting where one agent repeatedly faces
the same problem every period. Blume and Easley (1998; Section 5) study a compet-
itive economy. Bohren and Hauser [2018] and Frick, lijima, and Ishii [forthcoming]
study social learning environments. Rabin and Vayanos [2010] and Ortoleva and Snowberg
[2015| study environments with misspecification in non-iid settings where own actions
do not affect beliefs (i.e., passive learning). He [2018] studies misspecification in an
optimal stopping problem. Molavi [2018]| considers a recursive general-equilibrium
framework that nests a class of macroeconomics models in which agents learn with
misspecified models.? With the exception of some stochastic growth problems (e.g.,
Koulovatianos et al. [2009]), there are very few applications of the types of misspeci-

fied, active learning Markovian decision environments we consider in this paper. By

!Tdentification rules out situations where beliefs are incorrect due to lack of experimentation,
which is a hallmark of the bandit (e.g., Rothschild [1974], McLennan [1984], Easley and Kiefer [1988])
and self-confirming equilibrium (e.g., Battigalli [1987], Fudenberg and Levine [1993], Dekel et al.
[2004], Fershtman and Pakes [2012]) literatures.

2In macroeconomics there are several models where agents make forecasts using statistical models
that are misspecified (e.g., Evans and Honkapohja [2001] Ch. 13, Sargent [1999] Ch. 6).



proposing a tractable equilibrium approach, we hope to stimulate applications in this
area.

More generally, the paper is related to the literature which provides learning
foundations for equilibrium concepts, such as Nash or self-confirming equilibrium (see
Fudenberg and Levine [1998] for a survey). In contrast to this literature, we consider
Markov decision problems and allow for misspecified models. Particular types of
misspecifications have been studied in extensive form games. Jehiel [1995] considers
the class of repeated alternating-move games and assumes that players only forecast
a limited number of time periods into the future; see Jehiel [1998] for a learning
foundation.> We share the feature that the learning process takes place within the
play of the game and that beliefs are those that provide the best fit given the data.
As with much of this literature, our learning foundation for the equilibrium concept
does not guarantee that behavior converges to the equilibrium, but only that if it
converges, it must converge to an equilibrium; see Section 5.2 for further discussion.

Finally, a particular class of examples that fit our framework involve a typical
coarseness misspecification or a type of correlation neglect that have been studied in
previous frameworks, such as analogy-based expectation equilibrium (Jehiel [2005],
Jehiel and Koessler [2008]) and Bayesian networks (Spiegler [2016, 2017]).

The framework and equilibrium notion are presented in Sections 2 and 3. In
Section 4, we work through several examples. We provide a foundation for equilibrium

in Section 5 and conclude in Section 6.

2 Markov decision processes

We begin by describing the environment faced by the agent.

Definition 1. A Markov decision process (MDP) is a tuple (S, X, ¢, @, 7, )

where
e S is a nonempty and finite set of states
e X is a nonempty and finite set of actions

e gy € A(S) is a probability distribution on the initial state

3Jehiel and Samet [2007] consider the general class of extensive form games with perfect infor-
mation and assume that players simplify the game by partitioning the nodes into similarity classes.



e ():SxX— A(S) is a transition probability function
e 7:S XX xS — Ris a per-period payoff function

e 0 €10,1) is a discount factor

We sometimes use MDP(Q) to denote an MDP with transition probability function
@ and exclude the remaining primitives.

The timing is as follows. At the beginning of each period ¢t = 0,1,2,..., the
agent observes state s; € S and chooses an action z; € X. (It is straightforward to
incorporate a feasible set of actions that depends on the state.) Then a new state
S¢11 is drawn according to the probability distribution Q(- | s, z;) and the agent
receives payoft 7(s;, x4, s;41) in period ¢. The initial state sq is drawn according to
the probability distribution qy. As usual, the objective of the agent is to choose a
feasible policy rule to maximize expected discounted utility, >~ 0*7(ss, z¢, S141).

By the Principle of Optimality, the agent’s problem can be cast recursively as

Vi(s) = max/g{ﬂ(s, z,s') + oV (s} Q(ds|s, ) (3)

zeX
where V' : S — R is the (unique) solution to the Bellman equation (3).

Definition 2. An action  is optimal given s in the MDP(Q) if

T € arg max/{ﬂ(s, 2,8+ o0V (s} Q(ds'|s, T).
s

zeX

3 Subjective Markov decision processes

Our main objective is to study the behavior of an agent who faces an MDP but is
uncertain about the transition probability function. We begin by introducing a new
object to model the problem with uncertainty, which we call the subjective Markov
decision process (SMDP). We then define the notion of a Berk-Nash equilibrium of
an SMDP.

3.1 Setup

Definition 3. A subjective Markov decision process (SMDP) is an MDP, (S, X qo, @, 7, 9),
and a nonempty family of transition probability functions, Qg = {Qy : € € ©}, where

6



each transition probability function Qy : S x X — A(S) is indexed by a parameter
value 0 € O©.

We interpret the set Qg as the different transition probability functions (or models
of the world) that the agent considers possible. We sometimes use SMDP(Q, Qg) to
denote an SMDP with true transition probability function () and a family of transition

probability functions Qg.

Definition 4. An SMDP(Q, Qo) is misspecified if Q) ¢ Qg; otherwise, it is cor-
rectly specified. It is subjectively static if 7 and all elements in Qg do not
depend on the current state. It is static if, in addition to being subjectively static,

the true transition probability function ) does not depend on the current state.

An SMDP describes the agent’s subjective perception of the environment. In
particular, the agent has a correct perception of the state space, the action space, and
the payoff function, but she is uncertain about the transition probability function.
The static case was previously studied by Esponda and Pouzo [2016]. An SMDP is
subjectively static if the agent believes it is static, even though it might not actually
be a static environment. This property will play an important role in one of our main

results.

Definition 5. A regular subjective Markov decision process (regular-SMDP)

is an SMDP that satisfies the following conditions
e O is a compact subset of an Euclidean space.
e (Qy(s' | s,x) is continuous as a function of § € © for all (s,z,5) € S x X x S.
e There is a dense set © C © such that, for all § € ©, Qp(s' | s,z) > 0 for all

(s,z,8') € S x X x S such that Q(s' | s,z) > 0.

The first two conditions in Definition 5 place parametric and continuity assump-

tions on the subjective models.* The last condition plays two roles. First, it rules

4Without the assumption of a finite-dimensional parameter space, Bayesian updating need not
converge to the truth for most priors and parameter values even in correctly specified statistical
settings (Freedman [1963], Diaconis and Freedman [1986]). Note that the parametric assumption
is only a restriction if the set of states or actions is nonfinite, a case we consider in some of the
examples.



out a stark form of misspecification by guaranteeing that there exists at least one
parameter value that can rationalize every feasible observation. Second, it implies
that the correspondence of parameters that are a closest fit to the true model, to be
defined in the next section, is upper hemicontinuous, which in particular will imply

existence of equilibrium.

3.2 Equilibrium

The goal of this section is to define the notion of Berk-Nash equilibrium of an SMDP.
The goal of the solution concept is to predict a distribution over outcomes (meaning
state-action pairs), m € A(S x X), as a function of the primitives of the environment.
In Section 5, we will interpret an equilibrium distribution over state-action pairs as
the limiting frequency of state-action pairs in an environment where the agent is
Bayesian and updates her belief about the transition probability function in each

period.

Notation. For a given probability distribution over state-action pairs, m € A(S x
X), we will denote the marginal over S by mg, the marginal over X by my, and the
two conditional probability distributions by myx;s and mgx. We sometimes abuse
notation and eliminate the subscripts when referring to marginals and conditional

distributions if there is no room for confusion.

The next definition will be used to place constraints on the agent’s equilibrium

belief 1 € A(©) when the equilibrium distribution over state-action pairs is m.

Definition 6. The weighted Kullback-Leibler divergence (wKLD) is a mapping
Kg: A(S x X) x © — R, such that for any m € A(S x X) and § € ©,°

om0 = 3 Ean [ (G5 ) e

(s,x)eSxX

The set of closest parameter values given m € A(S x X) is the set

Og(m) = arg min Kg(m,0).

®We follow the standard convention that In(0) - 0 = 0.



The set Og(m) can be interpreted as the set of parameter values that constitute
the best fit with the true transition probability function () when outcomes are drawn

from the distribution m.

Lemma 1. (i) For every m € A(S x X) and § € ©, Kg(m,0) > 0, with equality
holding if and only if Qa(- | s,z) = Q(- | s,x) for all (s,x) such that m(s,z) > 0.
(i1) For any regular SMDP(Q, Qo ), m — Og(m) is non-empty, compact valued, and

upper hemicontinuous.

Proof. See Appendix A.1. O
We now define equilibrium.

Definition 7. A probability distribution over state-action pairs, m € A(S x X), is
a Berk-Nash equilibrium of the SMDP(Q, Qg) if there exists a belief yu € A(O)
such that (i) and (ii) below hold,

(i) (optimality) For all (s,z) € S x X such that m(s,x) > 0, x is optimal given s
in the MDP(Q,,), where Q,, = [ Qop(df),

(ii) (belief restriction) pu € A(Og(m)),

and, moreover, the following condition holds:

(ili) (stationarity) For all 8" € S, ms(s') = 32, 1yesxx @S | s,2)m(s, x).

Condition (i) in the definition of Berk-Nash equilibrium requires actions to be
optimal in the MDP where the transition probability function is [ Qgp(df). Con-
dition (ii) requires that the agent only puts positive probability on the set of clos-
est parameter values given m, ©g(m). Finally, to interpret condition (iii), note
that, for states that occur with positive probability, we can replace m(s,z) with
mys(x | s)ms(s) in the RHS of the expression. In particular, we can think of the
agent as following the strategy of choosing actions according to the probability dis-
tribution myxs(- | s) € A(X) in state s. Thus, the equilibrium transition probability
function over states is given by s — Q(-|s, z)mxss(x | s), and condition (iii) simply
says that mg is an invariant distribution for this equilibrium transition probability
function. In the special case of a static environment, our definition collapses to the

single-agent definition in Esponda and Pouzo [2016].

The next result establishes existence of equilibrium in any regular SMDP.



Theorem 1. For any reqular SMDP, there exists a Berk-Nash equilibrium.

Proof. See Appendix A.2. O

3.3 Identification

Identification plays an important role in the results that follow. In statistics, iden-
tification refers to the capacity to infer a unique data generating process from the
observed, exogenous data. In our environment, the notion of identification is a bit
more nuanced, because the data observed by the agent is endogenous, in the sense
that it depends on the agent’s actions. Thus, following Esponda and Pouzo [2016], it
is natural to consider two notions of identification. These notions distinguish between

outcomes on and off the equilibrium path.

Definition 8. An SMDP is weakly identified given m € A(SxX) if 6,60 € ©g(m)
implies that Qp(- | s,2) = Qa (- | s,x) forall (s, x) € SxX such that m(s, z) > 0; if the
condition is satisfied for all (s, z) € SxX, we say that the SMDP is identified given
m. An SMDP is (weakly) identified if it is (weakly) identified for all m € A(S x X).

Weak identification implies that, for any equilibrium distribution m, the agent has
a unique belief along the equilibrium path, i.e., for states and actions that occur with
positive probability. But there could be many beliefs consistent with what happens for
those state-action pairs that have zero probability. Thus, weak identification allows
one to capture bandit situations, where the agent settles for an action but may have
incorrect beliefs about the benefits she would have obtained with a different action.
Weak identification is a fairly weak condition and its failure is often associated with
knife-edge cases (see, for example, the coin example by Berk [1966]).

Identification strengthens the definition of weak identification by requiring that
beliefs are unique also off the equilibrium path. Under identification, it is as if the
agent can eventually learn (possibly incorrectly) the primitives of the environment

irrespective of her choice of actions.

Proposition 1. Consider a correctly specified and identified SMDP with correspond-
ing MDP(Q). If m is a Berk-Nash equilibrium of the SMDP then, for all (s,x) in the
support of m, x is optimal given s in the MDP(Q).

10



Proof. Suppose m is a Berk-Nash equilibrium. Then there exists 1 € A(©¢g(m)) such
that, for all (s,z) in the support of m, z is optimal given s. Because the SMDP is
correctly specified, there exists 6* such that Qp« = @ and, therefore, by Lemma 1(i),
6* € A(©g(m)). Then, by identification, any 6 € O¢g(m) satisfies Q5 = Qp- = Q,
implying that, for all (s,z) in the support of m, x is also optimal given s in the
MDP(Q). O

Proposition 1 says that, in environments where the agent is uncertain about the
transition probability function but her subjective model is both correctly specified
and identified, then Berk-Nash equilibrium corresponds to the solution of the MDP

under correct beliefs about the transition probability function.

4 Examples

Applications in the literature on agents with misspecified models have for the most
part concentrated on static environments. We hope that the equilibrium concept
developed in this paper encourages researchers to explore misspecification in the types
of dynamic environments that are central to many economic applications. For this
purpose, we pick three standard dynamic environments and, for each case, introduce
a novel misspecification and show how the equilibrium concept can be used to derive
concrete predictions. Overall, we hope to convey that Berk-Nash equilibrium can
help expand the scope of the classical dynamic programming approach in economics.

Some of the examples in this section assume, for convenience, a non-finite set
of actions and states. While the equilibrium concept extends in a straightforward
manner to non-finite settings, the proofs of the results we provide in the next section
rely on finiteness assumptions and we leave the extension to non-finite settings for

further work.

4.1 Dynamic effort task

We use the following stylized version of a dynamic effort task to illustrate the steps
required to find a Berk-Nash equilibrium.

MDP: In each period ¢, the agent chooses whether to put high or low effort in
a task, x; € X = {H, L}, where H represents high effort and L low effort. The task

then fails or succeeds, s;41 € S = {0, 1}, where 0 denotes failure and 1 success. The
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payoff is (L, s;11) = s4+1 under low effort and m(H, s;11) = s;41 —c under high effort,
where c is the cost of high effort. The probability of a success is 1 if the agent puts
high effort: Q(1| s, H) =1 for all s € {0,1}. The probability of success if the agent
puts low effort depends on the state: The probability of success is g = Q(1 | 0, L)
if the last task resulted in a failure and ¢; = Q(1 | 1, L) if it resulted in a success.
This simple setup captures several problems where the agent’s success depends not
only on her action but also on a previous success or failure. For example, a firm
that sells a product today may increase its chances of selling a product tomorrow due
to word-of-mouth advertising. Or an agent who succeeds on a task today may feel
motivated and find it easier to succeed on the task tomorrow for the same level of
effort.

For concreteness, we assume that
O<gp<l—-c<q <l (4)

In particular, the probability of a success under low effort is higher if the past task
was a success compared to failure. A myopic agent who knows the primitives will
find it optimal to choose H in state s = 0 (because ¢g, the expected payoff from L,
is lower than 1 — ¢, the payoff from H) and L in state s = 1 (because 1 — ¢ < ¢p). It
is also relatively easy to see that this strategy is optimal irrespective of the discount
factor of the agent.

SMDP. The agent believes, incorrectly, that the effort task is not dynamic. For-
mally, Qg = {Qy : 0 € ©}, where © = [0,1] and, for all € ©, Qy(1 | s, H) = 1 and
Qo(1]s,L)=0forall s € {0,1}. In particular, the agent knows that the probability
of success is one if she puts high effort, but the agent does not know the probability
of success if she puts low effort. Moreover, the agent believes that the probability of
success under low effort is independent of the current state. For example, the firm
might be unaware that word-of-mouth advertising is important or the agent may fail
to take into account how performance todays affects her motivation tomorrow. This
is an example of a subjectively static SMDP because the contemporaneous payoff
function 7 and the perceived transitions do not depend on the current state.

Equilibrium. For simplicity, we restrict attention to equilibria satisfying the
natural refinement that the agent’s action does not depend on the state: m; =
mxis(L | 0) = mxis(L | 1) and 1 —mp = mxis(H | 0) = mxs(H | 1). This is a

12



natural refinement because the agent does not think the current state matters, but it
potentially leaves out mixed-strategy equilibria where the agent is indifferent between
the two actions and for some reason decides to use a tie-breaking rule that depends
on the state.

Stationarity. Condition (iii) in the definition of Berk-Nash equilibrium requires

ms(1) = > QU s z)mxygs(x | s)ms(s)

(s,x)eSxX

= (I —=mg) +mg (goms(0) + qims(1)),

and, solving this equation for mg(1), we obtain the stationary probability of s =1 as

a function of the agent’s behavior, mp:

1-— mL(l — qO)

ms(1) = L —mp(qn — qo)

(5)

Beliefs. The wKLD is given by

"5, x
Ko(m,0) = Z mxjs(z | s)ms(s ZQS | s,2)In Qs /| )
(s,2)eSxX s'eS Q@( | S .l’)

= —mp{ms(0)(qoIn 0 + (1 - go) In(1 — 0))
+ms(1)(g11n6 + (1 — ¢q1) In(1 — 0))} + Const,

where C'onst is a term that does not depend on 6.
If my > 0, then

Oo(m) = (1 —ms(1))go + ms(1)a (6)

is the unique parameter value that minimizes the wKLD function. Intuitively, (6) is a
weighted average of the probabilities that low effort yields a success in each state, qg
and q;, where the weights are given by the stationary probabilities of each state. If,
however, m; = 0, the wKLD is constant in the parameter and any # € © minimizes
wKLD.

We will make a second refinement and restrict attention to equilibria where (6) is
the unique minimizer even if L is chosen with probability zero, m; = 0. One rationale
is that the agent has a small but vanishing probability of trembling, and, consistent

with the first restriction, this probability does not depend on the state.
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Optimality. Because the agent believes that the problem is static, the optimal

strategy is to choose the action that maximizes current period’s payoff. Let
D@)=6—-(1—-c¢) (7)

denote the perceived expected payoff difference of choosing L vs. H under the belief
that the parameter value is 6 with probability 1. If D(#) > 0, then L is the unique
optimal strategy: m; = 1. If, on the other hand, D(0) < 0, then H is the unique
optimal strategy: my = 0. Finally, if D(0) = 0, there is no restriction on my.

Equilibrium. By equation (5) and assumption (4), mg(1) is continuous and de-
creasing as a function of my. Intuitively, the higher the probability of low effort, the
lower is the stationary probability of being in the state s = 1 where the task is suc-
cessful. Also by equation (6) and assumption (4), 8o (m) is continuous and increasing
as a function of mg(1). Thus, we can combine equations (5) and (6) to produce a
mapping which, in a slight abuse of notation, we denote by my +— fg(my) that is
continuous and decreasing: As my increases, the probability of state s = 1, mg(1),
decreases, which in turn yields a decrease in 0.

Finally, we take the mapping my — 6g(my) together with equation (7) to form
the mapping which, in a slight abuse of notation, we denote by my +— D(mp), where
D(mp) = 6g(mr) — (1 — ¢) is the agent’s perceived expected payoff difference of
choosing L vs. H under the belief that minimizes KLD when the agent chooses no
effort with probability my. Simple algebra (combining equations (5), (6), and (7))
shows that

D(my) = (¢ —mw(q — q0))/(1 = meles = g)) = (1 = ¢). (8)

The mapping my — D(my) is decreasing because, as explained earlier, m; —
8o(my) is decreasing. To find the equilibria, it is convenient to first compute D(0)
and D(1). Simple algebra yields D(0) = ¢ — (1 — ¢) > 0. Intuitively, if my = 0 then
the agent is spending all the time in state s = 1, and so a small tremble resulting
in action L occurs in a state where the probability of success is ¢;. Thus, a small
tremble leads the agent to believe that the probability of success under L is ¢;. Since
q1 > 1—c, the agent would then like to deviate and choose L with positive probability.
As my, increases, however, state s = 0 becomes more likely and the agent becomes

more pessimistic about the probability of a success under L.
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Figure 1. Equilibrium of the dynamic effort environment

The most pessimistic belief for the agent is at my, = 1. Simple algebra yields
D(1) = qo/(1 = (¢1 — q)) — (1 —¢). If the primitives (go, ¢, 1) are such that D(1) > 0,
then there is a unique equilibrium where mj; = 1. If, however, D(1) < 0 then there
is a unique equilibrium and it given by the mixed action mj € (0,1) that solves
D(mj) = 0. Using the expression in (8), it is easy to see that the mixed equilibrium
action is given by m} = (¢1 — (1 — ¢))/(c(q1 — qo))-

Figure 1 shows an example where the equilibrium action is mixed. In addition
to demonstrating the mechanics underlying the equilibrium concept, this example
illustrates the importance of allowing the agent to take mixed actions, a feature that

is not needed in standard dynamic optimization settings.

4.2 Stochastic growth with correlated shocks

Stochastic growth models have been central to studying optimal intertemporal alloca-
tion of capital and consumption since the work of Brock and Mirman [1972|. Freixas
[1981] and Koulovatianos et al. [2009] assume that agents learn the distribution over
productivity shocks with correctly specified models. We follow Hall, Robert E. [1997]
and subsequent literature in incorporating shocks to both preferences and produc-
tivity. We show that there is underinvestment in equilibrium whenever shocks are

positively correlated but agents fail to account for this correlation.
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MDP. In each period ¢, an agent observes s; = (y;, 2:) € S = Ry x {L, H}, where
y; is wealth and z; is an i.i.d. utility shock, and chooses how much wealth to save,
x; € [0,4¢) € X = R, consuming the rest. Current period utility is m(y:, z¢, ) =
2z In(y; — x;). Wealth next period, y,.1, is given by

Iny 1 =a" + " Inx + &, 9)

where ¢, = v*z; + & is an unobserved i.i.d. productivity shock, & ~ N(0,1), and 0 <
dp* < 1, where 6 € [0,1) is the discount factor. The utility shock can be interpreted
as a shock to home or non-market production technologies (e.g., Bencivenga [1992]).
We assume that v* > 0, so that the utility and productivity shocks are positively
correlated. For example, technological advances increase productivity of both market
and non-market activities. Let 0 < L < H and let ¢ € (0,1) be the probability that
the shock is H. Formally, Q(y', 2’ | y, z,z) is such that ¢’ and 2’ are independent, 3’
has a log-normal distribution with mean o* + f*Inz + v*2 and unit variance, and
z/ = H with probability q.
SMDP. The agent believes that

Iny, 1 =a+ Blnx + &, (10)

where ¢, ~ N(0, 1) and is independent of the utility shock. For simplicity, we assume
that the agent knows the distribution of the utility shock, and is uncertain about
6 = (a,3) € ©® = R%  The subjective transition probability function Qg(y',2" |
y,z,x) is such that 3" and 2’ are independent, 3’ has a log-normal distribution with
mean « + fInz and unit variance, and 2’ = H with probability q. The agent has a
misspecified model because she believes that the productivity and utility shocks are
independent when in fact v* # 0.
Equilibrium. Optimality. The Bellman equation for the agent is
V(y,z) = Orgffyzln(y —x)+ OBV (Y, Z") | 2]

and it is straightforward to verify that the optimal strategy is to invest a fraction

of wealth that depends on the utility shock and the unknown parameter 3, i.e., x =

_ 0B((1—q)L+qH) _ B8((1=q)L+qH)
A.(B) -y, where AL(B8) = (1—65(1—q);1H+5qB(1—q)L and Ag(B) = m < Ap(B),

provided that 86 < 1, which will be true in equilibrium. For the agent who knows the
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primitives, the optimal strategy is to invest fractions Ay (5*) and Ag(5*) in the low
and high state, respectively. Since § — A, () is increasing, the equilibrium strategy
of a misspecified agent can be compared to the optimal strategy by comparing the
equilibrium belief about # with the true g*.

Beliefs and stationarity. Let A = (A, Ag), with Ay < Ap, represent a strategy,
where A, is the proportion of wealth invested given utility shock z. Because the
agent believes that ¢; is independent of the utility shock and normally distributed,
the minimizers of the wKLD function are the estimands of a linear regression model,
which are unique, and, therefore, this SMDP is identified provided the agent invests
more than zero with positive probability.® In particular, for a strategy represented
by A = (AL, Ay), the parameter value 3(A) that minimizes wKLD is

B(4) = Cov(InY’ In X) _ Cov(InY’' In(AzY))
Var(ln X) Var(In(AzY))
Cov(Z,InAy)
Var(lnAz) +Var(InY)

=p"+7"

where C'ov and Var are taken with respect to the (true) distribution of (Y, Z). Since
Ag < Ap, then Cov(Z,InAz) < 0. Therefore, the assumption that v* > 0 implies
that the bias B(A) — B* is negative and its magnitude depends on the strategy A.
Intuitively, the agent invests a larger fraction of wealth when z is low, which happens
to be during times when ¢ is also low.

Equilibrium. We establish that there exists at least one equilibrium with pos-
itive investment by showing that there is at least one fixed point of the mapping
B+ B(AL(B), Au(f)). This mapping is continuous and satisfies S(AL(0), Ax(0)) =
B(AL(1/6), Au(1/6)) = B* and B(AL(B), Au(B)) < B* for all B € (0,1/5). Then,
since 63* < 1, there is at least one fixed point S, and any fixed point satisfies
BM € (0,5*). Thus, the misspecified agent underinvests in equilibrium compared to

the optimal strategy.” The conclusion is reversed if v* < 0, illustrating how the frame-

SFrom equation (10) and Gaussianity of the residuals, the wKLD is proportional to the expected
(under the true measure) square of the residual in expression (10). Thus, the minimizers of the
wKLD coincide with the values of («, 8) that provide the best fit under this loss when the data is
distributed according to the true probability measure.

It is also an equilibrium not to invest, A = (0,0), supported by the belief 3* = 0, which
cannot be disconfirmed since investment does not take place. But this equilibrium is not robust
to experimentation (e.g., it does not survive a refinement where the belief when not investing is
required to be the limit of the belief as the fraction invested goes to zero).

17



work provides predictions about beliefs and behavior that depend on the primitives
(as opposed to simply postulating that the agent is over or under-confident about

productivity).

4.3 Production with uncertain cost

Finally, we consider an agent who produces with uncertain costs. This example il-
lustrates two features of the framework. First, unlike the previous examples, the
agent knows the dynamics governing the state variable. Instead, the agent has un-
certainty about the per-period payoff. The example shows how to incorporate this
kind of uncertainty into the framework. Second, in contrast to the previous examples,
where the agent directly omitted a variable or neglected a correlation, we consider a
case where the agent incorporates all relevant variables into her model but uses an
incorrect functional form.

MDP. Each period ¢, an agent observes a productivity shock z € Z = {z, ..., 2zx } C
R, and chooses an input + € X C R,. As a result, the agent obtains a payoff of
zIlnz — ¢(z) in that period, where ¢(z) = ¢(z)e is the cost of choosing z, and € is a
random, independent cost shock distributed according to the distribution p*, which
has support equal to [0,00). Let Q(2' | z) be the probability that tomorrow’s pro-
ductivity shock is z’ given the current shock z. We assume that there is a unique
stationary distribution over these productivity shocks, denoted by ¢ = (q1, ..., ¢ )-

SMDP. The agent knows all the primitives except the cost function ¢(-). The
agent believes that cy(x) = xe and € ~ py where py has support equal to [0, 00).
For concreteness, we assume that e follows an exponential distribution, pg(e) =
(1/0)e=(/9¢. In particular, the agent’s model is misspecified if either cost is non-
linear, i.e., ¢(-) is nonlinear, or the true distribution over cost shocks, p*, does not
belong to the exponential family.

The framework presented in this paper assumes that the agent knows the per-
period payoff function and may be uncertain about the transition function. To fit
this example into the framework, we simply let the cost ¢ be part of the state as

follows:
V(z,c) = max/ (zf(x) — +0V(Z,d)Q(d | 2)Q°(dc | ).
The variable ¢ is the unknown cost of production at the time the agent has to choose

18



x. Its distribution is given by QY(d¢’ | ), which is the distribution of ¢ = c¢(x)
as described above. The agent knows @ but does not know Q€. In particular, the
agent has a parametric family of transitions, where Q5 (dc’ | z) is the distribution of
= cy(x).

Equilibrium. Optimality. Suppose the agent has a degenerate belief on some 6.
Because the transition of ¢ does not depend on ¢ and the transition of 2’ does not
depend on z, the agent’s optimization problem reduces to the following simple static
optimization problem: max, zInz — xFjy[¢]. Noting that Ey[e] = 6, it follows that

the optimal input choice in state z; is
2, = 2/9 (11)

for j € {1, ..., K}.

Stationarity. The stationarity condition implies that the marginal of m over Z
is equal to the stationary distribution over z, which is given by ¢ = (q¢1,...,qx)-
Therefore, the stationary distribution over X, denoted by mx, is given by mx(z;) = ¢;,
where z; satisfies equation (11), and it is equal to zero otherwise.

Beliefs. The part of the wKLD function that depends on 6 is given by

> Eouw [log QF (¢ | 2)] mx(z) = Z EqIz)) logpa (¢ /1)) 45

_ ZEQ (o) { (¢ )x;) — ln@} q;
- —%Ep* 03260 /2,)g — n.

J

There is a unique parameter value 6 that maximizes this expression, and so this

SMDP is identified. This unique minimizer is given by
0 = Ep e (6(x))/)q;. (12)
J

The RHS of this expression is a weighted average of the expected average costs. This
expression depends on the assumption that e follows an exponential distribution, and
it would differ for different families of distributions. For example, for the case of the

log-normal distribution, the average cost should be replaced by the logarithm of the
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average cost.
Equilibrium. To solve for equilibrium, we first combine equations (11) and (12) to

obtain

0 = Epld ) (070(2/67)/2)4; (13)

J
A solution 6* to equation (13) corresponds to an equilibrium belief. To find the
equilibrium action as a function of the shock, we simply replace the equilibrium belief
0* into the optimality condition (11). To illustrate, suppose that the true cost function
is quadratic, i.e., ¢(x) = x?. Then there is a unique solution to (13) and, therefore, a

unique equilibrium belief 0* = (E,+[¢] E,[2])/? and action
75 = 2/ (Bp [ Ey[2])'2. (14)

We can contrast this expression with the optimal action of an agent who knows the
correct primitives and solves max, z In z —x? E,« [¢], thus obtaining the optimal action
P = (2 2By [)'"*. (15)

The optimal action depends on the productivity shock, while the optimal action for
the misspecified agent depends on both the shock and the average shock. The reason
is that the agent incorrectly believes the marginal cost is constant, and learns this
marginal cost by averaging over the marginal costs experienced in equilibrium, and
the distribution over these experienced costs depends on the stationary distribution
over all shocks. Comparing (14) and (15), we also observe that the misspecified
agent chooses actions lower than optimal if z; < E, [2]/2 and higher than optimal if
z; > Ey[z]/2. Intuitively, the agent overestimates the marginal cost of low actions, and
these low actions are taken when the shock is low. Similarly, the agent underestimates

the marginal cost of high actions, and these actions are taken when the shock is high.

5 Equilibrium foundation

Following the tradition of providing learning foundations for equilibrium concepts, in

this section we study the problem of an agent who faces a regular SMDP, starts with
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a prior py € A(O) over the set of models of the world ©, and updates the prior in
each period as a result of observing the current state, her action, and the new state.
Our main objective is to understand under which conditions the agent’s steady state

behavior can be represented by a Berk-Nash equilibrium.

5.1 Bayesian learning in SMDPs

Consider an agent who faces a regular SMDP and has a prior uo € A(O), which
is assumed to have full support. The prior is updated in each period using Bayes’
rule, where 1/ = B(s,x, s, ) is the posterior for any prior u, current state s, action
x, and realized future state s, and, for any (s,z,s’) € S x X x S, the Bayesian
operator B(s,z,s',-) : Ds,y — A(O) is defined as follows: For all A C © Borel,
B(s,z, 8", ))(A) = [,Qo(s" | s,2)u(d0)/ [o Qo(s" | s,2)u(d0) for any p € Dy,
where D, = {p € A(O): [y Qa(s' | s,2)p(df) > 0}.

By the Principle of Optimality, the agent’s problem can be cast recursively as

zeX

W(s,p) = maux/S {m(s,2,8) +0W (s, 1)} Qu(ds|s, x), (16)

where @, = Jo Qop(df), i = B(s,x,s', ;) is next period’s belief, updated using
Bayes’ rule, and W : S x A(6©) — R is the (unique) solution to the Bellman equation
(16). Compared to the case where the agent knows the transition probability function,

the agent’s belief about © is now part of the state space.

Definition 9. A policy function is a function f : S x A(©) — A(X), where
f(x | s, ) denotes the probability that the agent chooses = if she is in state s and
her belief is p. A policy function f is optimal if, for all s € S, p € A(0), and z € X
such that f(z | s,u) >0,

v e argmax [ (a5, + W (S, Blsy ')} Qulds |5, 5).
S S

Let h = (so, %o, .., St, X1, ...) represent an infinite history of state-action pairs
and let H = (S x X)* represent the space of infinite histories. For every t, let
wy » H — A(O) denote the agent’s belief at time ¢, defined recursively by p;(h) =
B(si—1, -1, S, tu—1(h)) whenever B is the Bayesian operator, and arbitrary other-

wise. Henceforth, we drop the history A from the notation.
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In each period t, there is a state s; and a belief y;, and the agent chooses a (possibly
mixed) action f(- | s, ) € A(X).® After an action z; is realized, the state sy, is
drawn from the true transition probability. The agent observes the realized action and
the new state and updates her belief to p;11 using Bayes’ rule. The primitives of the
problem (including the initial distribution over states, qo, and the prior, py € A(O))
and a policy function f induce a probability distribution over H that is defined in a
standard way; let P/ denote this probability distribution over H.

We now define outcomes as random variables. For every ¢, we define the frequency
of state-action pairs at time t to be a function m; : H — A(S x X) such that, for all
h, and (s,z) € S x X,

1
mye(h)(s,x) = - Z 1(s2)(5r, ;)
7=0

is the frequency of times that the outcome (s, x) occurs up to time t. One reasonable
criteria to claim that the agent has reached a steady-state is that the time average of
outcomes converges.

The next result establishes that, if the frequency of state-action pairs converges

to m, then beliefs become increasingly concentrated on O¢(m).

Lemma 2. Let () denote the true transition probability function and f the policy
function. Suppose that (my); converges to m for all histories in a set H C H such that
P/ (H) > 0. Then, for all open sets U 2O Og(m), limy_,oo pt (U) =1 P/-a.5.- in H.

Proof. See Appendix A.3. O

The proof adapts the proof of Lemma 2 by Esponda and Pouzo [2016| to dynamic
environments and the reader is referred to that paper for an intuitive explanation of
the result.”

The following result provides a learning foundation for the notion of Berk-Nash
equilibrium of an SMDP.

8In particular, it would be straightforward to introduce payoff perturbations to our environment
so that the agent’s behavior at time ¢ would be given by a nondegenerate distribution over actions.

9The seminal result providing asymptotic characterization of Bayesian beliefs when the data
generating process is exogenous (i.e., absent any actions) is due to Berk [1966]; see also
Bunke and Milhaud [1998] and Shalizi [2009] for extensions.
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Theorem 2. Let f be an optimal policy function. Suppose that (my); converges to m
with P/ -positive probability and that the SMDP is weakly identified given m. Suppose
also that one of the following conditions hold:

1. The SMDP is subjectively static.

2. The SMDP 1is identified given m.

Then m is a Berk-Nash equilibrium of the SMDP.

Proof. See Appendix A.4. O

Theorem 2 provides a learning justification for Berk-Nash equilibrium. The main
idea behind the proof is as follows. For each state-action pair (s,z) in the support
of m, there exists a subsequence of state-action pairs and beliefs such that (s,x) is
played along the entire subsequence. Moreover, we can find a sub-subsequence where
the belief converges; let us, € A(S x X) denote this limiting belief under which
(s, ) realizes. Since (my); converges to m, we can apply Lemma 2 to conclude that
tsz € A(O©g(m)). Thus, by optimality of f and the upper hemicontinuity of the
correspondence of optimal actions, it follows that for any state s and any action x
in the support of m(- | s), x is optimal in the dynamic optimization problem with

current belief y ,, i.e.,

T € arg mag;/{ﬁ(s,i, s') +OW (s, 1)} Q. . (ds']5, 2). (17)
ze S

Consider first the case where the SMDP is subjectively static. In this case, the
value function W only depends on the agent’s belief, and, slightly abusing notation,
(17) implies that

Eoy i [1(2,8) + W(B(2, S, 5] > Bo,. ) [(0.8) + W (B(y, 5", p..))]

(18)
for any other action y. By weak identification, B(x, ', s ) = s, for all s’ that
occur with positive probability according to (., and so the LHS of (18) becomes
Eq,. .l [m(2,8") + 0W (115,2))]. Next, we add and subtract 0W (us ) from the RHS
of (18) to obtain

EQ“S’Z(-\y) [W(y’ Sl) + 5W(:us,x)] + 6EQ“S’I(-\y) [W(B(y, Sla Ns,m)) - W(:U’s,m)] : (19)
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The second term in (19) is what is known in the literature as the value of experimen-
tation: It is the difference in net present value between starting next period with up-
dated belief B(y, S, ps ), which depends on the action y and the random realization of
S’, and starting next period with the current belief y, ,. By the Martingale property of
Bayesian updating and the convexity of the value function, it follows that the value of
experimentation is nonnegative; formally, Eg, (1) [W(B(y, 5" pts2)) — W (pse)] >
WI(Eq,. B, S tse)]) = W(kse) = 0. It then follows that Eg, (o) [7(2,S")] >
Eg,...cly [m(y,S")]. Thus, for any (s, z) in the support of m, there exists a belief 1,
such that x is optimal when the belief is fixed at ji,,. Finally, weak identification im-
plies that all the beliefs in {y, : m(s,z) > 0} yield the same probability distribution
over next period’s state conditional on an action in the support of myx. Therefore, we
can replace all these beliefs with a single belief that belongs to A(O¢g(m)), so that
conditions (i) and (ii) in the definition of equilibrium are satisfied for the special case
of subjectively static SMDPs.

More generally, we can prove the same result by assuming identification. If the
SMDP is identified, we can essentially think of A(©g(m)) being a degenerate belief
on a specific parameter value, which in turn implies two properties: First, p,, does
not depend on s, x; denote it by u. Second, since the belief 1 is degenerate, it will
forever remain fixed, and so (17) implies that x is optimal given s in the MDP(Q,,),
where the belief is fixed at . Thus, one again, conditions (i) and (ii) in the definition
of Berk-Nash equilibrium are satisfied.

Finally, the reason why condition (iii) in the definition of Berk-Nash equilibrium
holds can be described as follows. If the agent were using strategy m; to make de-
cisions, then the probability distribution over states next period would be given by
QIma] (1) = 32 pyesxx @( | s, 2)me(s, x). Since my converges to m and the operator
Q] is continuous, the asymptotic evolution of the state is given by the probabil-
ity distribution Q[m](-). Since m; converges, then it must converge to a stationary
distribution of the Markov process over states defined by this operator.

In the remainder of this section, we investigate the extent to which we can extend
the previous arguments to cases where identification fails or the SMDP is not subjec-
tively static. We begin by noting that the definition of steady state used in Section
5.1 (the convergence of time averages) is different from the definition used elsewhere.
In previous work (e.g., Fudenberg and Kreps [1993|, Esponda and Pouzo [2016]), it is

common to define a steady state as a situation where the agent’s intended behavior
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converges. In Theorem 2, all we need is that the time average converges, but, because
of the dynamic nature of the environment, we need the convergence of the frequency
of state-action pairs, not just of the actions. In particular, this type of convergence
does not guarantee that the agent’s intended behavior converges, but only that its fre-
quency does. We now show that if we strengthen the notion of steady state to require
that both intended behavior and time averages converge, then a steady state corre-
sponds to a Berk-Nash equilibrium provided that all states are visited with positive
probability.!°

We define a strategy o : S — A(X) to be a mapping between states and probability
distribution over actions. Let Y denote the set of all strategies. For a fixed policy
function f and for every ¢, let oy : H — ¥ denote the (time-t intended) strategy of
the agent, defined by setting

o(h) = f(- |- m(h)) € 2.

Theorem 3. Let f be an optimal policy function. Suppose that (o) converges and
that (my); converges to m with P/ -positive probability and that the SMDP is weakly
identified given m. Suppose also that m(s) > 0 for all s € S. Then m is a Berk-Nash
equilibrium of the SMDP.

Proof. See Appendix A.5. O

The main idea behind the proof is as follows. We can always find a subsequence of
posteriors that converges to some p* and, by Lemma 2 and the fact that the agent’s
intended strategy (o;); converges to some o, it follows that o must solve the dynamic
optimization problem for beliefs converging to p* € A(Og(m)). A key difference
with the proof of Theorem 3 is that we can use the fact that the agent’s intended
behavior converges to conclude that the same belief p* justifies all of the agent’s
limiting actions. Next, it is not difficult to show that the limiting behavior of the
agent in state s must correspond to the conditional distribution of the limiting time
average, i.e, o(- | s) = m(- | s). Since all states are visited with positive probability
according to m, it follows that there exists a belief p* such that for every (s, z) with

m(s,z) > 0, x is optimal in the dynamic optimization problem with current belief

0We are unable to show if this result is also true when intended behavior does not converge.
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w*. The final step is to show that this type of optimality implies optimality in the
dynamic optimization problem where the belief is fized at p*.

For this final step, we rely on the assumption that all states are visited with
positive probability, and the argument is as follows. For each s, let z; denote an
action that is played in the limit when the state is 3, i.e., m(§, xz) > 0. Consider the
strategy where the agent plays x; in each state 5. By weak identification, the belief
never changes and the value of following this strategy does not depend on the specific
belief in A(O¢(m)), since, by weak identification, all parameter values in Og(m) give
rise to the same distribution over next period’s states. By the previous optimality
argument, we know that action z, is optimal in state s given belief p*. This means
that zy maximizes the sum of today’s payoff and the continuation value, where the
continuation value is the value of playing x; in each state s in the future. Consider
an alternative action y. This alternative action yields some payoff today and then a
continuation value where it is possible that the agent’s belief changes. This possibly
new belief, call it 4/, must still have support in ©¢g(m), since the original belief 1* has
support in ©¢g(m). Consider the continuation value of this action y with a new belief
1/ and a new state. The agent can still, from that moment on, follow the strategy of
playing z; in each state § in the future. Thus, the continuation value from playing y
is at least the same or higher as the continuation value from x,. Therefore, the fact
that x, is optimal when the nonnegative value of information from playing a different
action y is taken into account implies that x, must also be optimal when the belief is
fixed at p* and there is no further value from learning.

The argument in the proof of Theorem 3 relies on the assumption that all states are
visited with positive probability. This assumption allows us to construct a strategy
(to play z;z in each state §) that provides a lower bound to the payoff that the agent
could obtain from choosing an action that could potentially lead to an updated belief.
We conclude with an example illustrating that this assumption is important. In
particular, the following example shows a case where only one state is reached in
steady state and, even though the agent’s behavior and the time average converge,

this steady state is not a Berk-Nash equilibrium.

EXAMPLE. There are 5 states, s!, so, 51, Sk, and s°P'. In states so and s;, the agent
gets utility 0 and 1, respectively, and then returns to the initial state s’. In state sy,
the agent gets utility & and then returns to the initial state s’. In the initial state

s, the agent has four possible actions, A, B, S, and O. Irrespective of her action, she
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gets utility 2/3 in state s’. If she chooses A, she goes to state s with probability 6
and s; with 1 — 6, while if she chooses B, she goes to sg with probability 1 — 0 and s;
with probability #. If she chooses S, she remains in state s’. In other words, A and
B are risky alternatives that yield utility O or 1 tomorrow, and S is a safe action that

yvields 2/3 tomorrow. Moreover, the agent eventually returns to s’

. Formally, the
payoffs are m(s’, x) = 2/3 and 7(s;,z) = j for all z, and the transitions are Qy(so |
', A) = Qo(s1 | s",B) =0, Qo(s1 | s',A) = Qu(s0 | 8", B) = Qu(s0 | s",0) =10,
and Qy(s” | sj,2) =1 forall j € {0,1,k} and all z.

The agent can also take action O in state s’, which potentially generates the
option to make a risky but more profitable investment yielding £ in the future. Taking
action O in state s’ leads the agent to state s?* with probability # and state sy with
probability 1 — 6. In state s', the agent gets a utility cost (loses) 1/3 irrespective
of her action. If she chooses to make a risky investment (R, which we can associate
with actions A, B, and O in order to have the same set of actions for all states),
with probability 1 — 6 she goes to state s, and therefore gets utility k£, and with
probability € she goes to state sy, and therefore gets utility zero. If she chooses the
safe option (S), then she goes to state s’ next period. In any case, she always ends
up returning to state s’. Formally, the payoffs are m(s°?*, x) = —1/3 for all  and the
transitions are Qp(s%" | s, 0) = Qa(so | s, R) = 0, Qo(si | s, R) = 1 — 6, and
Qo(s! | 5Pt S) = 1. Figure 2 depicts all the states, actions, and transitions for this
example.

Suppose that the agent knows all the primitives except the value of #. Moreover,
suppose that the true value of @ is either 0 or 1, and that the SMDP is correctly
specified, i.e., © = {0,1}, thus highlighting that the new issue present in dynamic
environments is not due to misspecification. We will also assume that the agent
is patient, but not too patient, § € (0, \/1/73), and that the return from the risky
investment in state s is high enough relative to the rate of impatience, k > 2+4/4.

This problem is simple enough that we can directly characterize the steady state
and then check if it is a Berk-Nash equilibrium. Consider a (Bayesian) agent who
starts with a prior = Pr(§ = 1) € (0,1) in state s’. If she chooses action O, then,
beginning next period (recall that all actions yield the same current payoff of 2/3 in
state s’), she will get

puW (s 1) + (1 — )W (80, 0). (20)

Crucially, if action O takes her to state s, then she learns that § = 1, so that
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Figure 2: Example: Steady state is not a Berk-Nash equilibrium.
States are depicted with circles and actions with squares. For each state, blue lines indicate the
actions that can be taken in the state. Black arrows indicate transition probabilities given each

state-action pair.

' = 1. In this case, it is optimal to take the safe action and return to s’ next
period, since taking the risky action would lead to a zero payoff with probability one
and a delay in getting back to s of one period. Therefore, W (s 1) = —1/3 +
W (s, 1). Also, if she ends up in state so, she gets 0 and then goes on to state
st ie., W(sp,0) = 0+ 6W(s?,0). Moreover, if the agent is in state s’ and has
certainty about the state, i.e., g/ = 0 or 1, then it is optimal for her to choose either
action A or B, respectively, and her payoff alternates between 2/3 and 1 forever, i.e.,
W(s!, 1) = W(s!,0) =: W* = (2/3+46)/(1 — §2). Therefore, expression (20) becomes

— (1/3)p+ W™, (21)

Consider instead the case where the agent chooses action A in state s’. Then next
period she gets
(1= p)W(s1,0) + pW (s0,1), (22)

where W (s1,0) = 14 6W(s!,0) = 1 + 6W* and W(sp,1) = 0+ dW(s!,1) = W™,
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Thus, expression (22) becomes
(1 —p) + W™ (23)
Similarly, if the agent chooses action B then next period she will get
JU ) (24)

Finally, choosing action S in state s’ keeps the agent in state s/ and results in no
information about @ being revealed. If S is optimal at s, then it is optimal to choose
it in every period, in which case the agent earns a payoff of 2/3 in each period and

her discounted payoff beginning next period is

23

= (25)

Comparing (21) and (23), it follows that action A is better than action O for any
belief y, implying that the agent will never pick O in state s. Intuitively, the agent
realizes that, if she picks O and ends up in state s°?*, then she will infer that the risky
alternative will deliver a zero payoff for sure, and so there is no point in picking O
to begin with. Also, by comparing (23), (24), and (25), it follows that if the agent

starts in state s’ with a prior u that satisfies

13 _ o _2/3- 8
1oz - H=>"1"52

then it is optimal for her to choose S and stay at s’ forever. (Such a set of priors is
nonempty because J € (0,+/1/3)). Therefore, repeatedly choosing S and staying at
s is a steady-state outcome. Note, however, that Theorem 2 does not apply to this
steady state because (i) the SMDP is not subjectively static, and (ii) identification
does not hold, because the agent learns nothing about 6 by playing S at s’. Theorem 3
also does not apply here, because in this steady-state outcome only state s’ is visited.
In fact, we will now show that this steady-state outcome cannot arise in a Berk-Nash
equilibrium, suggesting a limitation of equilibrium analysis in dynamic settings.

To analyze Berk-Nash equilibria, let © denote the agent’s equilibrium belief and
consider the agent’s choice in state s’. Let’s first find the set of u’s such that action

S is preferred to both A and B, ignoring action O. If the agent takes action S, then,

29



beginning next period (recall that all actions yield the same current payoff), she goes
back to s’ and obtains
W (s', ). (26)

Action A, on the other hand, yields

pW (so, 1) + (1 — p)W(s1, ), (27)

where, importantly, the agent does not update her equilibrium belief upon moving to
state sg or sq, as the definition of equilibrium requires optimization with respect to
a single, fixed equilibrium belief. As before, we have W (sg, ) = 0 + dW (s’, i) and
W(s1, i) =1+ W (s!, u). Therefore, expression (27) becomes

(1= p) + W (s, o). (28)

Similarly, action B yields
g W (s, o). (29)

Finally, note that if S is optimal, then the agent stays always in s’ and earns 2/3 in
every period; therefore, W (s!,u) = (2/3)/(1 — §). It then follows from (27), (28),
and (29) that S can be optimal only if 1/3 < p < 2/3. We will show, however, that
under any such p, the agent prefers action O to action S. Therefore, S cannot arise
as a Berk-Nash equilibrium outcome. To establish this claim, let’s assume that S is

optimal. A deviation to action O would yield
W (s, 1) + (1 — )W (s0, 1), (30)

where W (s 1) = —1/3 4+ 6(uW (so, pt) + (1 — )W (81, i1)). Note that we have used
the fact that, in deviating to O, the agent would pick the risky alternative in state

opt

sP*; otherwise, it could never be optimal to choose O. By also using the fact that

W(sj, ) =7+ oW (s, u), for j € {0, k}, expression (30) becomes

= (1/3)p+ 0pu(1 = )k + (nd + (1 — )W (s", p). (31)

Using the fact that W (s, u) = (2/3)/(1—4) if S is optimal, we can compare W (s, u1)

with (31) and use algebra to conclude that it is strictly lower (hence, the agent prefers
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to deviate from S to O) for all values of p between 1/3 and 2/3 given the assumption
that £ >2+4/6.' O

5.2 Discussion

We conclude with additional remarks about the above results.

Guidance for using equilibrium concept: Theorems 2 and 3 suggest that the equi-
librium approach is valid in SMDPs that are not subjectively static provided that
either identification holds or that all states are visited with positive probability (the
latter is the case, for example, if every state can be reached from any other state ir-
respective of the agent’s actions). Alternatively, if either of these conditions fails, the
modeler can add small perturbations that either guarantee that identification holds
(as we did, for example, in Section 4.1) or small perturbations that guarantee that
all states can be reached with positive probability. Of course, there are environments
where these perturbations are not justifiable, such as in bandit problems where the
only way to learn about the consequence of an action is to take that action. To
the extent to which those environments are not subjectively static, then our results

suggest that the equilibrium approach is of limited use in those cases.

Convergence: Theorems 2 and 3 do not imply that behavior will necessarily sta-
bilize in an SMDP. In fact, it is well known from the theory of Markov chains that,
even if no decisions affect the relevant transitions, outcomes need not stabilize with-
out further assumptions—this is also true, for example, in the related context of

2 Thus, the question of convergence

learning to play Nash equilibrium in games.!
remains open at this level of generality. Recently there has been progress tackling
convergence, but all in the context of static environments where the only relevant
state variable is the agent’s belief (Fudenberg, Romanyuk, and Strack [2017], Heid-
hues, Készegi and Strack (2018a, 2018b)), Esponda, Pouzo, and Yamamoto [2019],

Frick, Iijima, and Ishii [2020], and Fudenberg, Lanzani, and Strack [2020]).

U (s, p) is less than expression (31) whenever 2/3 + u((2/3)d + 1/3) — du(1 — p)k < 0. For
1/3 < pu < 2/3, the LHS of this last expression is largest when p = 2/3, and replacing this value in
the expression we obtain k > 2 +4/4.

2For example, in the game-theory literature, general global convergence results have only

been obtained in special classes of games—e.g. zero-sum, potential, and supermodular games
(Hotbauer and Sandholm, 2002).
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Mixed strategies: Theorem 3 also suggests that we can interpret a mixed strategy
as the limit of the frequency of actions. In particular, even if the agent’s action may
not settle down, the frequency of actions may; see Esponda, Pouzo, and Yamamoto
[2019] for a formalization of this idea. Alternatively, we can interpret a mixed strat-
egy following the approach of Fudenberg and Kreps [1993], who show that adding
small payoff perturbations a la Harsanyi [1973] can provide a learning foundation for
mixed-strategy Nash equilibria: Agents do not actually mix; instead, every period
their payoffs are subject to small perturbations, and what we call the mixed strat-
egy is simply the probability distribution generated by playing pure strategies and
integrating over the payoff perturbations. We also followed this approach in the pa-
per that introduced Berk-Nash equilibrium in static contexts (Esponda and Pouzo,

2016). The same idea applies here at the expense of additional notational burden.'?
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A Appendix

A.1 Proof of Lemma 1

The proof of Lemma 1 relies on the following claim.

Claim A. (i) For any regqular SMDP, there exists 0* € © and K < oo such
that, for all m € A(S x X), Kg(m,0") < K. (i) Fiz any 0 € © and a sequence
(mn)n in A(S x X) such that Qo(s" | s,2) > 0 for all (s',s,z) € S xS x X such that
Q(s" | s,x2) > 0 and lim,,_,oc my, = m. Thenlim,_,o Kg(m,,0) = Kg(m,0). (it) Kq
is (jointly) lower semicontinuous: Fix any (my), and (0,), such that lim, ., m, =
m and lim, 0, = 0. Then liminf, . Kg(m,,0,) > Kg(m,0). (iv) For all
m € A(S xX), 0 — Kg(m,0) is continuous at every 8 € © such that Kg(m,0) < oc.

Proof of Claim A. The proof is very similar to the proof of Claim A in Esponda and Pouzo
[2016], so we only present a sketch. Part (i) follows from the third condition in the
definition of regular SMDP. Part (ii) follows standard continuity arguments. For
part (iii), observe that Kq(my,,0n) =3, . Eq(|s) [log %] my (s, x). It follows
that Y., Eo(jo (05 Q(S'ls, )] ma(s,2) = ¥, Eorjom log Q('ls,2)] m(s, 2), s0
it remains to study liminf, oo — >, . Eq(|s.2) [log Qa, (S'[s,2)] mn(s, x). Suppose the
liminf is finite (if not, the result holds trivially). As 6 +— @y is continuous, then if
m(s,x) > 0it follows that Eg(.|s ) [log Qa, (5|5, 2)] mn(s, ) = Eg(|sa) [1og Qo(S']s, x)] m(s, ).
If m(s,x) = 0, it follows that Eq.|s . [log Qg, (S'|s, )] mp(s, ) = 0 > —Eg(s2) [log Qo (S’|s, x)] m(s, x)
(by convention 0log0 = 0). Thus the desired result holds.

Part (iv): Since ), EQ(|sx) [log PICHLE) ] m(s,z) < 0o, continuity follows from

Q@(S/|8,LL‘)

continuity of 6 — log g;é,‘f;%@(sﬂs, x)m(s,x) and the fact that S x X is finite. [J

Proof of Lemma 1. (i) By Jensen’s inequality and strict concavity of In(-),

Kq(m.0) = =32, syesxx (Eqism G m(s, 2) = 0, with equality if and only
if Qo(- | s,2) = Qg(- | s,z) for all (s, x) such that m(s,x) > 0.

(ii) ©g(m) is nonempty: By Claim A(i), there exists K < oo such that the

minimizers are in the constraint set {# € © : Kgp(m,0) < K}. Because Kg(m,-) is
continuous over a compact set, a minimum exists.

©¢(-) is uhc and compact valued: Fix any (my,), and (6,,), such that lim,_,,, m,, =
m, lim, e 0, = 6, and 6,, € Og(m,) for all n. We establish that € Og(m) (so
that ©¢(-) has a closed graph and, by compactness of O, it is uhc). Suppose, in
order to obtain a contradiction, that 8 ¢ ©g(m). Then, by Claim A(i), there exists
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§ € © and £ > 0 such that KQ(m,é) < Kg(m,0) — 3¢ and KQ(m,é) < 0. By
regularity, there exists (6;); with lim; ., 6; = 6 and, for all j, Qg,(s" | s, ) > 0 for
all (s',s,2) € S? x X such that Q(s' | s,z) > 0. We will show that there is an integer
J such that éJ “does better” than 6,, given m,, which is a contradiction. Because
Kq(m, ) < oo, continuity of Kq(m,-) implies that there exists J large enough such
that )KQ(m, 0;) — Kqo(m, é)) < /2. Moreover, Claim A(ii) applied to 6 = 0 implies
that there exists N. ; such that, for all n > N, ;, ‘KQ(mn,éJ) — Ko(m, éJ)’ < eg/2.

Thus, for all n > N.j, |Ko(ma,05) — Ko(m,0)| < |Kq(ma,0;) — Kq(m, ;)| +
| Kq(m, 0;) — Ko(m, é)’ < ¢ and, therefore,

Kq(mn,0;) < Kg(m,0) +& < Ko(m, 0) — 2. (32)

Suppose Kg(m,0) < oo. By Claim A(iii), there exists n. > N.; such that
Kg(my,,0,.) > Kg(m,0)—e. This result, together with (32), implies that K¢ (m,,_, 6,)
Kg(my,_,0,.) —e. But this contradicts 6,. € Og(m,,). Finally, if Kg(m,f) = oo,
Claim A(iii) implies that there exists n. > N ; such that Kg(m,,_,0, ) > 2K, where
K is the bound defined in Claim A(i). But this also contradicts 6,, € Og(my,. ).
Thus, ©¢(-) has a closed graph, and so ©¢g(m) is a closed set. Compactness of
©¢g(m) follows from compactness of ©. Therefore, ©¢(-) is upper hemicontinuous
(see Aliprantis and Border [2006|, Theorem 17.11). O

A.2 Proof of Theorem 1

Let W = A(S x X) x A(©) and endow it with the product topology (given by the
Euclidean one for A(SxX) and the weak topology for A(©)). Clearly, W # {0}. Since
© is compact, A(©) is compact under the weak topology; ¥ and A(S x X) are also
compact. Thus, W is compact under the product topology. W is also convex. Finally,
W C M X rca(©) where M is the space of [S| x |X] real-valued matrices and rca(©)
is the space of regular Borel signed measures endowed with the weak topology. The
space M x rca(©) is locally convex with a family of seminorms {(m, p) — pr(m, p) =
[lm|| + | [, f(z)p(dz)|: f e C(Q)} (C(Q) is the space of real-valued continuous and
bounded functions and ||.|| is understood as the spectral norm). Also, we observe
that (m, ) = 0 iff py(m, p) =0 for all f € C(2), thus M x rca(O) is also Hausdorff.
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Let 7 : W — 2% be such that T (m, u) = M(m, n) x A(©g(m)) where
(m,p) = M(m,p) ={m’ € A(S x X): m' € O(u) and mg = Q[m]}

where for any p € A(©), O(u) is the set of all m’ € A(S x X) that satisfy optimality,
i.e., for all (s,z) € Sx X such that m(s,z) > 0, z is optimal given s in the MDP(Q,,),
where Q, = [ Qop(df); and m — Q[m](-) = dsmesxx Q| s,2)m(s,z) € A(S).

Hence, to show existence of an equilibrium, it is sufficient to show that 7 has a
fixed point. Since W is a nonempty compact convex subset of a locally Hausdorff
space, there exists a fixed point of 7 by the Kakutani-Fan-Glicksberg theorem (see
Aliprantis and Border [2006|, Corollary 17.55), if 7 is nonempty, convex valued, com-
pact valued, and upper hemicontinuous under the product topology (and hence, it
has a closed graph (see Aliprantis and Border [2006|, Theorem 17.11)).

Non-empty: We show that, for every (m,p) € W, M(m, p) and Og(m) are
non-empty, and thus, so is 7 (m, ). Nonemptiness of ©g(m) follows from Lemma 1.
For nonemptiness of M (m, p1), note that, for each s, the argmax of the MDP(Q,,) is
non-empty; in particular, there exists m%\g such that, for each s, any action in the
support of mys(- | s) is optimal. Then m’ = myQ[m] € A(S x X) is an element of
M(m, p).

Convex-valued: It suffices to show that both for every (m,u) € W, A(©g(m))
and M(m, u) are convex. Convexity of the former is obvious. To show convexity
of M(m,u) take any m; and my in M(m,pu). For any A € [0,1] it is clear that
Ams 1+ (1—AN)mso = Q[m]. Also, any (s, z) in the support of Amy + (1 —X)my has to
be in the support of either m; or my and thus, z is optimal given s in the MDP(Q,,).
Therefore Amy + (1 — X\)me € M(m, p).

Compact-valued: For every (m, pu) € W, A(©¢g(m)) is compact (under the weak
topology) because ©¢g(m) is compact (see Aliprantis and Border [2006], Theorem
15.11). The set A(S x X) is compact, so to show compactness of M(m, p) it suffices
to show it is closed. Take any convergent (to some m’) sequence (m! ), in M(m, p).
It is clear that m' = Q[m]. Take any (s,x) in the support of m’, it follows that for
sufficiently large n, (s, ) are in the support of m, and so, x is optimal given s in the
MDP(Q,,). Thus, Tis compact-valued under the product topology.

UHC: By Aliprantis and Border [2006], Theorem 17.28 to show upper hemiconti-
nuity of 7 under the product topology it suffices to show that both m — A(O¢(m))
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and M are uhc. The correspondence Og(-) is upper hemicontinuous; hence, the cor-
respondence A(Og(+)) is too (see Aliprantis and Border [2006], Theorem 17.13). To
show upper hemicontinuity of M, take a sequence (m!,, mpy, t,), in Graph(M) that
converges to (m',m, p). It is clear that mg = Q[m] so we only need to show that O
is uch.

Claim: O is uhc.

Proof: Take any sequence (m!, p,), in Graph(QO) that converges to (m/, u). Take
any (s,z) in the support of m’. Then, for sufficiently large n, (s, x) are in the support
of m/, and, therefore,  is optimal given s in the MDP(Q,,,). By standard arguments
(5,Q) = M(s,Q) = argmaxzex [ {7(s,Z,5) + 0V (s')} Q(ds'|s, &) is uhc (since Sx X
are finite, ) belongs to the space of real-valued matrices with its natural topology).
Since 6 — Qp is bounded and continuous, p + @, is continuous under the weak
topology. Thus (s, u) — M(s,Q,) is uhc. Since z € M(s,Q,,) for all n, it follows
that € M(s,Q,); therefore, z is optimal given s in the MDP(Q,,), as desired. OJ

A.3 Proof of Lemma 2

For the proof of Lemma 2, we rely on the following definitions and the claim below.
Define Kj(m) = infoece Ko(m,0) and let © C O be a dense set such that, for all
0 € O, Qu(s' | s,2) > 0 for all (s,2,5) € S x X xS such that Q(s' | s,2) > 0.

Existence of such a set © follows from the regularity assumption.

Claim B. Suppose lim;_,« ||m; — m| = 0 a.s.-P/ . Then: (i) For all § € ©,

lim ¢~ 121 ST|ST LT 1 = Z EQ( |s,) [log ((SS/«/||SS 2;,))] (87‘7;)

=00 QG ST|ST 1, Tr— 1 (5,2)ESXX

a.s.-P/. (ii) For P/-almost all h € Hand for any € > 0 and a = (infe. 4,,(9)>c Ko(m,0)—
K%(m))/3, there exists T such that, for all t > T,

_ 8T|S’T 15 Tr— 1) 3
t log > K,H(m) + -«
Z QG ST|ST—17$T—1) Q( ) 2

for all 0 € {©: d,,(0) > €}, where d,,(0) = 110 = 9).

GEQQ(m

Proof of Claim B. (The proofis similar to the proof of Claim B in Esponda and Pouzo
|2016]) We first show that for P/-almost all histories and any ¢ > 0, there exists a
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M_such that

t1 Zlog@ Sr|Sr—1,Tr_1) Z Eq(|s,) [logQ(S’\s x)|m(s,z)| <e

T=1 (s,x)eSxX

for all t > M,.. To do this, for any 7 € {1,2,...} let [, = logQ(s;|Sr—1,7,-1) —
EQ(jsr—1r-1) [log Q(S"sr-1, xT_l)} . Observe that for all z € S* x X, Eps () [li41] = 0

a.s.-P/, where P/(-|h!) denotes the conditional probability induced by P/ given the

partial history h!. Moreover, sup, Eps[12] < sup, > ._, 72E [> . s(log Q(s'S, X))?Q(s" | S, X)] <
oo because z — (logz)?x is bounded and Y772 < co. Thus, an application of the

MCT and Kronecker’s lemma imply that

t

lim 713 (108 Qs 371, 271) = B se, 108 QS |sr1,2-1) | ) = 0

=1
a.s.-P7. Therefore, to establish the desired result it suffices to show that

lim ¢~ ZEQ( 57— 1,211) [logQ(S\sT 1, Tro1 } Z Eq(|s,2) [logQ(S\s x)} (s,x) =0

t—o0
T=1 (s,x)eSxX
(33)
a.s.-Pf. Observe that

t t
t_l Z EQ(v|s.,,1,x.,,1) |:10g Q(SI|ST—17 Ir—l)] = Z t_l Z 1(8,{2)(£7’—17 Ir—l)EQ(-\s,m) |:10g Q(S,|S> I)]

=1 s,2€SXX =1
— Z my(s, ©) Eqg(.|s.q) [log Q(95'|s, I)] .
s,2€SXX

Equation (33) follows because lim;_,, [|m; — m|| = 0 a.s.-P¥ and Eg(.js.) [log QS's, x)} =
Y seslog Q(s'|s, x)Q(s']s, x) is bounded for all (s, 2) € SxX. So, in order to establish

parts (i) and (ii) it only remains to control the expression

t
- tll)rgé t_l Z (1Og QG(ST|ST—1a x'r—l) - EQ(-\5771750771) [1Og QG(SI|ST—1> zr—l)})

=1
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Part (i). Pointwise over ©,

t
tligt t_l Z <10g QG(ST|ST—1> 557'—1) - EQ('|5771,96771) lOg QG(S,|ST—1’ 1'7_1)] ) =0

=1

a.s.-P7/ by essentially the same arguments used in the first part of the proof.
Part (ii). For any £ > 0 let © C © such that 0 € O iff Qp(s'|s,z) > £ for all
(s',s,x) such that P, (s',s,x) > 0. Also, observe that

t
lim ¢ "log Qo(se|sr—1,2,—1) = Y freq(s,s,)log Qy(s'|s, x)
=1

t—o0
s',5,2€S2xX

where z > fregi(z) = 713 1.(s7, 81, 7,1). Let (s,5,2) = Pp(s,s,x) =
Q(5|s, x)m(s,z). By essentially the same argument used in the first part of the
proof, it follows that for any ¢ > 0 and P/-almost any h, there exists a T such that
max,es2«x | freq(z) — Pn(z)| < ¢ for all t > T¢.

Hence, for any 6 € {0\ O} N{O: d,,(0) > €}

Z frre%(s/v va) lOgQG(S/|S7x) < Z (Pm(S/,S,fL’) o C) lOgQ9(8/|S,LL’)

(s,8,2)€SZxX (s,8,2): Pm(s',8,2)>0

< Z EQ(-\S,:C) [logQ9(3/|s,x)]m(s,x)

s,2€SXX

—¢ > log Qo(s's, z)

(s',8,2): Pm(s’,s,2)>0

for all ¢ > T;. Therefore,

t
1Y log Qi T S ie Y logQ(s)s )
T=1

Qo(sr|8r—1, 1) (o50): Pt s )50

for any ¢ > max{T¢, M,}. By definition of {©: d,,(f) > €} it follows that

t
t_l Zlog Q(8T|ST—17xT—1) zKa(m) ‘l‘ 20{ ‘I’C Z log Q0(81|S’$)
=1

Qo(sr|8r—1,2r-1) (o5): Pt s )50

for any t > T¢. Since 6 € {O\ O} N{O: d,,,(0) > €}, let 2z = (sp, Sp, x9) be such that
Qo(sp|se, rg) < & and Py (zg) > 0 and note that (Y- o ). p (s.5.0)50 108 Qo(s'|s, ) <
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Clogé&py where pr, = min{P,,(z): P,(z) > 0}. This implies that there exists a (* such
that ¢*log {pr, < —0.5a and so

_ ST|ST 1y Lr— 1) 3
t=' ) log >Kg(m) + o
Z QG ST|ST—17$T—1) Q( ) 2
for any ¢ > max{T¢, M,}.
Forany 6 € ©:N{O: dn(0) > €}, it follows that D o | ycqorx freq(s's s, x) log Qg(s']s, x) <
In¢,

t_lzl 0 Q(Sr|sr—1,7, 1) >—Iné+ > Eg(sa [10gQ(S’|s,x) m(s,z) — 1

Q@ ST‘ST—lvxT—l) (s,2)ESXX

forany t > M. Since Y, )csux EQls,) [log Q(S'|s, x)lm(s, x) is finite we can choose
¢ such that the RHS is larger or equal than K7(m) + 5a.

We thus showed that for P/-almost all ~ € H and for any e > 0, there exists T'
such that, for all ¢ > T,

_ ST|ST 1y Lr— 1) 3
t 1 > K} + =
Z o8 QG ST|ST—17 $7’—1) Q(m) 2a

for all 0 € {©: d,,(0) > €}, as desired. [

Proof of Lemma 2. It suffices to show that lim;_, f@ A (0)p1:(dB) = 0 a.s.-P/
over H. For any 1 > 0 let ©,(m) = {# € © : d,,(0) <7}, and ©,(m) = O N O,(m)
(the set © is defined in condition 3 of Definition 5, i.e., regularity). We now show
that ,uo((:)n(m)) > 0. By Lemma 1, ©g(m) is nonempty. By denseness of ©, (:)n(m)
is nonempty. Nonemptiness and continuity of 6 — @y, imply that there exists a
non-empty open set U C ©,(m). By full support, 1(6,(m)) > 0. Also, observe
that for any € > 0, {©: d,,(6) > €} is compact. This follows from compactness of
© and continuity of 6 — d,,(#) (which follows by Lemma 1 and an application of
the Theorem of the Maximum). Compactness of {©: d,,(6) > €} and lower semi-
continuity of § — Kg(m,0) (see Claim A(iii)) imply that infe. 4, 9> Kg(m,0) =
Ming. 4,,(9)>c Kq(m, ) > Kj(m). Let a = (mine. 4,,(9)>c Kq(m,0) — K5(m))/3 > 0.
Also, let 7 > 0 be chosen such that Kq(m,0) < K§(m) + 0.25a for all 6 € ©,(m)
(such n always exists by continuity of 6 — Kg(m,6)).
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Let H; be the subset of H for which the statements in Claim B hold; note that
P/ (H \ H;) = 0. Henceforth, fix h € H;; we omit h from the notation to ease the
notational burden. By simple algebra and the fact that d,, is bounded in ©, it follows
that, for all € > 0 and some finite C' > 0,

Jo dm(0)Qo (st | st-1,21-1)p1e-1(d0) _ Jo dm(0) Z(0) p10(d0)
f@ Qe S¢ | Se—1, @p—1)pe—1(d0) f@ Z1(0) po(de)
f{@ dm (0)>€} Z(0)110(d0) Ay(e)

To.on 2@~ By

/@ o (6)12(d8) =

<e+(C

where

Q@ 8T|ST 1, Tr— 1 8T|ST 1, Tr— 1)
| | = exp E log .
ST|ST 1y Lr— 1 QG ST|ST—1)xT—1)

Hence, it suffices to show that

hﬂigp {exp {t (K*(m) + 0.5a)} A(e)} =0 (34)
and
lim inf {exp {t (K(m) +0.5a) } By(n)} = oc. (35)

Regarding equation (34), we first show that

Q(ST|ST—1a x'r—l)
Q@(ST|ST—1a x'r—l)

t
lim  sup {(Ké(m) +0.5a) —t Z log } < const < 0.
=1

{0010 dn (0)>€}
To show this, note that, by Claim B(ii) there exists a T, such that for all t > T,
=13 log(Q(8r]8r1,2r-1)/Qo(Sr |81, 20-1)) > Kg(m)+3a, foralld € {©: dy,(0) >
¢}. Thus,

- ST|ST 1y Lr— 1)
lim sup {K - —t ! log } < —
100 {0 din(0)>€} ol Z QG (87]8r—1,Tr-1)
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Therefore,

liziris;}p {exp {t (K5 (m) +0.5a) } Ay(e) }

t
: — Q(ST‘ST—17:’UT—1)
<limsup  sup exp{t( Kj5(m)+0.5a) —t* E log )}
t=00 {01 dpm(0)>e} (Kam) ) — 7 Qo(sr]sr—1, 1)

= 0.

Regarding equation (35), by Fatou’s lemma and some algebra it suffices to show
that
hgglf exp {t (K5 (m) +0.5a) } Zy(0) = 00 > 0

(pointwise on 6 € (;)n(m)), or, equivalently,

t
S — Q(ST|ST—1axT—1)
liminf ( K} (m) +0.5a —t™ 1) lo > 0.
t—o00 < Q( ) ; gQ@(ST|ST—17xT—1)>

By Claim B(i),

Q(ST|ST—17 xT—l)
Q@(ST‘ST—17 xT—l)

t
lim inf(KZQ(m) +0.50 — ¢ Z log

t—o0

):Kam%HWQ—Kdmﬁ)

T=1

pointwise on 6 € ©,(m)). By our choice of i, the RHS is greater than 0.25c and our
"

desired result follows. OJ

A.4 Proof of Theorem 2.

Let H be the set of histories such that (m;); converges to m. By hypothesis, P/(H) >
0. By Lemma 2, there exists a set H' with P/(H') = P/(H) > 0 such that every
history in H’ satisfies the result stated in Lemma 2. Throughout, we fix a history
h € H'. Henceforth, we omit the history from the notation.

Also, let (p, ) — M (s, ) = argmaxgex [ {m(s, 2, s') + W (s, B(s,z, s, 1))} Qu(ds'|s, x),
which by standard arguments is uhc.

We will first establish conditions (i) and (ii) in the definition of Berk-Nash equi-
librium. Let (s, z) be such that m(s,x) > 0. Since (m;); converges to m, (s, z) occurs

infinitely often along the history, so we can find a subsequence along which (s, )
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occurs along the entire subsequence: (sy;), zy;j)) = (s, ) for all j. By compactness of
A(O), we can take a further subsequence such that p,, = limy o fte((r)) exists. By
our choice of history (see beginning of proof) and Lemma 2, u,, € A(Og(m)). Also,
since © € M (S, juy(jry)) for all k and limy,_,o0 ft4(j(k)) = fhs,z, uhc of M(s,-) implies that
x € M(S, pts.). Thus, we have shown that, for any (s, z) such that m(s,z) > 0, there
exists pis, € A(Og(m)) such that

zeX

T € arg max/{ﬂ(s, 2,8") + oW (s, B(s, 2,5, ps))} Qu,.. (ds']s, 2). (36)
s

We will now consider each case in Theorem 2 separately. Consider first the case
where identification holds. Identification implies that there exists ()}, such that, for
all u € A(Og(m)), Q. = Qr,. Note also that the posterior given pu € A(Og(m))
must also be in A(©¢g(m)), and so expression (36) implies that x is optimal in the
MDP(Q;,). Thus, picking any p € A(©¢g(m)), we have shown that, for all (s,z) in
the support of m(s,z), condition (i) is satisfied. Because pu € A(BOg(m)), condition
(ii) is also satisfied.

Consider next the case where the SMDP is subjectively static. In this case, the
payoff function, the value function, the Bayesian operator, and the subjective transi-
tion probability function do not depend on s, and so, in a slight abuse of notation,

we drop s from subsequent expressions. For any 2’ € X,

/S {n(, ') + SW (B, & 110))} Q. (5| 2) = / (2, §') Qo (d5']2) + W (j10)
> / (n(a ') + W (B(a', & 122))} Qp., (d5']2)

> [ ') () + 5 ).
s

where the first line follows from weak identification (since (s,z) is in the support
of m, weak identification implies B(x, s, i) = ps. for all s’ in the support of
Q... (ds'|z)), the second line follows from (36), and the third line follows from the con-
vexity of the value function o — W (u) (which we prove at the end of this proof) and
the martingale property of Bayesian updating (which imply, using Jensen’s inequal-
ity o W (B, o' tt0) Qu (d512°) = Wy B, o) Qu (d512)) = W (1,0).)
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Therefore,
T € arg max/ﬂ(i, s)Qu, . (ds'|Z). (37)

zeX S

Thus, for the subjectively static SMDP, we have shown that, for any (s,z) in the
support of m, there exists a belief p, , € A(Og(m)) such that (37) is satisfied (which,
for this special case, means that x is optimal given s in the MDP(Q,,, ,)).

It remains to establish that we can pick p,, to be the same for all (s, z) in the
support of m. We will use the assumption of weak identification to establish this
claim. Let (s*,2*) be any other element in the support of m. By repeating the
argument above, there exists pis« .« € A(Gg(m)) such that

S argma}z(/ﬂ(i, s)Qu.. .. (ds'|2). (38)
zTe S ’

By weak identification and the fact that both p,, and ug .« belong to A(BOg(m)),

then Q.. .. (-3, %) = Q.. (-|3, %) for all (3, ) in the support of m. Therefore, for any

2 eX,

[ 7@ (@17 = [ 7l ) (01

S S

> /S”(x, ) Qe (d5'|)
_ / (2, 5)Q,,. (ds'|2)

S

> / w(@, )0y (d5']2),
S

where the two equalities follow from the implication of weak identification mentioned
above and the two inequalities follow from (38) and (37), respectively. Thus, we can
use the same belief y, , to support any state-action pair (s*, 2*) in the support of m.

We conclude by showing condition (iii) in the definition of Berk-Nash equilibrium.
Let m — Q[m](s') = 32, pyesxx Q8" | s, x)m(s, x) for any s" € S. We want to show
that ms = Q[m|. By the triangle inequality,

[Ims = Qmll| < [Ims(-) =Y mesa (5 )|+ D mpsa () = Qlmu] || +||Qme] = Qm]] .

zeX zeX

As (my); converges to m, the first and the third terms in the RHS vanish. We now
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show that the second term also vanishes and thus conclude the verification of condition
(iii). Observe that for any s’ € S,

S ma(s') = Qmal(s) = (t+ 1) D 1u(50) = 7S QU | )

Lo(s1) + 171 300 1 (s4)
t+1 ’

=7 3 {Lo(srn) = QU | st )} +

The second summand of the RHS vanishes as ¢ — oo. Regarding the first one, ob-
serve that for any t € N Epy [15(s¢41) | h] = Q(8' | 8¢, 1), where Epy|- | h'] is the con-
ditional expectation under P/ given history hf. Let ¢, = S0 7 {14(s,11) — Q(s' |
si, )} and note that sup, Eps[¢?] < 2sup, Y., 772 < oo. Thus, by the Mar-
tingale convergence theorem , the process ((;)%°, converges P/-a.s. to (. Kro-
necker’s Lemma implies that lim; oot ™' > _ {1 (sr41) — Q(8' | st,24)} = 0 P/-
a.s. Without loss of generality, we assume the history h satisfies this limit and thus
oo || Dpex mes1 () — Qmel|| = 0.

Proof that u +— W(u) is convex: The value function is unique so it suffices to
show that the Bellman operator maps convex functions into themselves. To do this,
let py and po be in A(O), for any A € (0,1), ux = Mg + (1 — AN)pe and g — G(p) be

convex. Define

BIG () = max [ {w(a. ) + 0G(B(w. o', 1)} Qo (0| o).

Note that

IQG(S, | x)lu’l(de)B(x s ,ul) (

J Qo(s' | z)px(d0)

f Qo(s 2(d9)

(2,8) = B(x,s',1uy) = A IQG px(do)

B(x, s, us).

By convexity of G,

/ G(B(z. 5, 1)) Qo (d5' | 2) < A / G(B(z, ', 1)) Qo (ds' | 2)+(1-) / G(B(z, 8, 1))@y (d5' | 2).
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Therefore

BIG) () < [ {n(e,) 48 [ GUBGe. o)} Qu(d | 2)+

(- / {n(.s) +6 / G(B(z. 5", 1))} Oy (ds' | 2)
<AB[G] (1) + (1 = N)B[G](p2)

as desired.

A.5 Proof of Theorem 3.

Consider the set ‘H' introduced at the beginning of the proof of Theorem 2, and recall
that P/(H’) > 0. Observe that for any history and any ¢ € {0,1,...}, P/(s/,2' | ht) =
ai(h)(2'|s")Q(S |st, x1). Thus, by the MCT, there exists a set M of histories such that
for each h € M

Limn ||y (h) — ¢ 12@ Q(|sp, )| =0

and P/(M) = 1. Throughout, we fix a history h € #' N M, and note that P/ (H' N
M) > 0. Henceforth, we omit the history from the notation. Also, define M (s, j1) as
in the proof of Theorem 2.

We already proved condition (iii) of the definition of Berk-Nash equilibrium when
we proved Theorem 2, so here we prove conditions (i) and (ii).

We first show o(-|-) = m(-|-). To do this, observe that t=' 30 Q(:|ss, ;) =
>0 QCs, m)my(s, z) and so

lim ||t~ 12@ Qs ) — o ZQ (-|s, x)m(s, x)|| = 0.

t—o00

By our choice of history, this implies that m(s',2") = o(2'[s") 3=, , Q(s']s, x)m(s, x)
for any (s',2") € A(SxX). By condition (iii), it follows that m(s’, 2’) = o(2'|s")m(s’),
which implies that m(.].) = o(.].), as desired.

Next, note that, by compactness of A(©), we can find a subsequence of beliefs
(f4e(k))r that converges to some p*. By our choice of history (see beginning of proof)
and Lemma 2, pu* € A(Og(m)). Next, consider any (s, x) such that m(s,z) > 0,
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which readily implies that o(z | s) > 0. By convergence of o) to o, oy (x| s) =
f(x | s, pyy) > 0 for all sufficiently large k. By optimality of f it follows that
r € M(s, puu) for all sufficiently large k. By uhc of M and convergence of ju
w*, it follows that x € M (s, u*). Thus, it follows that there exists u* € A(@Q( ))

such that, for any (s, x) in the support of m,

x € argmax/{ﬂ s,&,8) + W (s, B(s, &, 8, 11*))} Q= (ds'|s, 2). (39)

We conclude by establishing that = is optimal given s in the MDP where the belief
is fixed at p*. That is,

T € arg max/ {m(s,2,8) + 0V, (s)} Qu (ds'|s, 7)

zeX
where s — V< (s) = maxzex [ {m(s, 2, ') + 6V, (')} Q- (ds']s, 2).
Since m(s) > 0 for all s, it follows that for any s and for any = such that m(z |
s)=o(x]|s) >0,
W(s,pu*) = /{w(s, z,8') +0W(s', B(s, 2,8, 1*))} Q. (ds']s, z)
S
= [{r(s.0.) + WL 1)} Q.2 (40
S

where the second line follows from p* € A(©¢g(m)) and weak identification. Therefore,
by the uniqueness of the value function, s — W (s, u*) = V- (s).
Hence, it suffices to show that for any = € X

/S{W(s, z,8) + 0V, (s} Qe (ds'|s, ) > /S{W(s, 2,8) + 0V, (s} Qi (ds|s, ).

For this, let s — z(s) be such that o(z(s)|s) > 0 for all s € S. Observe that

/{71’837 N4 6V, (8)} Qe (ds'| s, 2(s) /{ﬂsxs)—i-éW(s B(s, 2,8, 1))} Q- (ds']s, Z).
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By weak identification and the fact that (s',z(s")) € supp(m), it follows that

W(s', B(s, 2,5, u")) /{71’ s x(s'), ")+ W (s",B(s, 2,8, W)} Qps,p.5 ) (ds”]s', 2(s"))
/{7? s x(s),s") + OW (s", B(s, 2,8, 1))} Qu-(ds”|s', z(s"))

where the second line follows because B(s,,s’, u*) € A(©g(m)) and under weak

identification this implies that s — Qp(s.zs ) (|5, 2(s)) = Qu(:]s,z(s)) for any

(s,z(s)) € supp(m). By applying this inequality over and over to W (-, B(s, &, s', u*)),
it follows that

W B0, ,000) 2 S0 Q | [ 70,0y (0512 ()

where g — Q+[g = [g(s")Qu(ds'|s,z(s)) for any s € S. By uniqueness of the
value function, the RHS equals V,«(s’) and thus

W(s', B(s,z,s', %)) > V= (s)

for any s’ € S, thereby implying the desired result.
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