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Abstra
t

We provide an equilibrium framework for modeling the behavior of an agent

who holds a simpli�ed view of a dynami
 optimization problem. The agent fa
es

a Markov de
ision pro
ess, where a transition probability fun
tion determines

the evolution of a state variable as a fun
tion of the previous state and the

agent's a
tion. The agent is un
ertain about the true transition fun
tion and

has a prior over a set of possible transition fun
tions; this set re�e
ts the agent's

(possibly simpli�ed) view of her environment and may not 
ontain the true

fun
tion. We de�ne an equilibrium 
on
ept and provide 
onditions under whi
h

it 
hara
terizes steady-state behavior when the agent updates her beliefs using

Bayes' rule.
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1 Introdu
tion

Early interest on studying the behavior of agents who hold misspe
i�ed views of the

world (e.g., Arrow and Green [1973℄, Kirman [1975℄, Sobel [1984℄, Kagel and Levin

[1986℄, Nyarko [1991℄, Sargent [1999℄) has re
ently been renewed by the work of

Pi

ione and Rubinstein [2003℄, Jehiel [2005℄, Eyster and Rabin [2005℄, Jehiel and Koessler

[2008℄, Esponda [2008℄, Esponda and Pouzo (2016, 2017, 2019), Eyster and Pi

ione

[2013℄, Spiegler (2013, 2016, 2017), Fudenberg, Romanyuk, and Stra
k [2017℄, Hei-

dhues, K®szegi and Stra
k (2018a, 2018b), and Eliaz and Spiegler [forth
oming℄,

among others. There are least two reasons for this interest. First, it is natural for

agents to be un
ertain about their 
omplex environment and to represent this un-


ertainty with parsimonious parametri
 models that are likely to be misspe
i�ed.

Se
ond, endowing agents with misspe
i�ed models 
an explain how 
ertain biases in

behavior arise endogenously as a fun
tion of the primitives.

The previously 
ited papers fo
us on problems that are intrinsi
ally �stati
� in the

sense that they 
an be viewed as repetitions of stati
 problems where the only link

between periods arises be
ause the agent is learning the parameters of the model.

Yet dynami
 de
ision problems, where an agent 
hooses an a
tion that a�e
ts a state

variable (other than a belief), are ubiquitous in e
onomi
s. The goal of this paper

is to provide a tra
table framework to study dynami
 settings where the agent has a

possibly misspe
i�ed model.

We study a Markov de
ision pro
ess where a single agent 
hooses a
tions at dis-


rete time intervals. A transition probability fun
tion des
ribes how the agent's a
tion

and the 
urrent state a�e
ts next period's state. The 
urrent payo� is a fun
tion of

states and a
tions. As is well known, this problem 
an be represented re
ursively via

the following Bellman equation,

V (s) = max
x∈Γ(s)

π(s, x) + δ

�

S

V (s′)Q(ds′ | s, x), (1)

where s is the 
urrent state, x is the agent's 
hoi
e variable from a feasible set Γ(s), π

is the payo� fun
tion, Q is the transition probability fun
tion, and δ is the dis
ount

fa
tor.

In realisti
 environments, the agent often has to deal with two di�
ult issues:

a potentially large state spa
e (i.e., the 
urse of dimensionality) and un
ertainty
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about the transition probability fun
tion. For example, equation (1) may represent

a dynami
 savings problem where the agent de
ides every period what fra
tion x of

her wealth to save. The state variable s is a ve
tor that in
ludes wealth as well as

any variable that helps predi
t returns to savings, su
h as previous interest rates and

other ma
roe
onomi
 indi
ators. The fun
tion Q represents the return fun
tion, and,

naturally, the agent may not even be sure whi
h indi
ators are relevant in predi
ting

returns. In su
h a 
omplex environment, it is reasonable to expe
t the agent to

simplify the problem and fo
us only on 
ertain variables by solving a version of

equation (1) where Q is repla
ed by a �simpler� transition fun
tion.

The main obje
tive of this paper is to provide a framework for modeling the be-

havior of an agent who holds a simpli�ed view of the dynami
 optimization problem

represented by equation (1). Our approa
h is to postulate that the agent is endowed

with a family of transition probability fun
tions, {Qθ : θ ∈ Θ}, indexed by a param-

eter spa
e Θ. This family 
aptures both the un
ertainty of the agent as well as the

way in whi
h she simpli�es the problem. In parti
ular, the agent's model is misspe
-

i�ed whenever the true model Q is not in {Qθ : θ ∈ Θ}. For example, the agent may

in
orre
tly believe that 
ertain ma
roe
onomi
 indi
ators are irrelevant for predi
ting

returns, but she may still be un
ertain as to the predi
tive value of the remaining

indi
ators. Ea
h period, the agent observes the 
urrent state, 
hooses an a
tion, and

then updates her belief using Bayes' rule when the new state is realized.

Our main 
ontribution is to introdu
e an equilibrium 
on
ept to des
ribe the

steady-states of the agent's learning dynami
s when the agent is a Bayesian learner

with a misspe
i�ed model. To 
hara
terize the agent's steady-state behavior, the

modeler simply solves problem (1), ex
ept that the true transition fun
tion Q is

repla
ed by the agent's per
eption of this transition, Q̄µ∗ =
�

Θ
Qθµ

∗(dθ), where µ∗

is interpreted as the agent's equilibrium belief over all models in Θ. As any other

equilibrium obje
t, the equilibrium belief µ∗
is determined endogenously. In addition

to gaining tra
tability, we fo
us on equilibrium behavior be
ause it is standard in

e
onomi
s and allows us to relate our �ndings to previous work and also be
ause we are

interested in the long-run impli
ations of model misspe
i�
ation and not ne
essarily

on mistakes that arise from limited opportunities to learn.

We say that a probability distribution over state-a
tion pairs is a Berk-Nash equi-

librium if it satis�es two requirements. First, there exists a belief over Θ su
h that,

for any state-a
tion pair in the support of the equilibrium distribution, the agent's
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a
tion given the state is optimal given the belief, and, moreover, the belief puts prob-

ability one on the set of parameter values that are �
losest� to the true transition

probability fun
tion over state-a
tion pairs. The notion of �
losest� is formalized by a

weighted version of Kullba
k-Leibler divergen
e, where the weights in turn depend on

the equilibrium distribution. Se
ond, the agent's equilibrium behavior gives rise to

a parti
ular Markov pro
ess over states and a
tions, and we require the equilibrium

distribution to be a stationary distribution of this pro
ess.

We then illustrate how our equilibrium 
on
ept 
an help analyze environments that

seemed previously intra
table using three examples. First, we 
onsider the problem of

an agent fa
ing a dynami
 e�ort task who fails to a

ount that his performan
e today

is a�e
ted by his performan
e yesterday. Se
ond, we 
onsider a sto
hasti
 growth

model where the agent in
orre
tly assumes that produ
tivity and preferen
e sho
ks

are independent. Finally, we 
onsider a produ
tion problem with Markov sho
ks and

un
ertain 
ost where the de
ision maker has an in
orre
t parametri
 spe
i�
ation of

the 
ost fun
tion.

We 
on
lude by investigating one possible foundation for our equilibrium 
on
ept.

Consider the 
ase where the agent has a prior belief µ over Θ that is updated using

Bayes' rule based on the 
urrent state, the agent's de
ision, and the state observed

next period, µ′ = B(s, x, s′, µ), where B denotes the Bayesian operator and µ′
is the

posterior belief. One 
onvenien
e of Bayesian updating is that we 
an represent this

problem re
ursively via the following Bellman equation, where the state variable now

also in
ludes the agent's belief:

W (s, µ) = max
x∈Γ(s)

π(s, x) + δ

� �

W (s′, µ′)Qθ(ds
′ | s, x)µ(dθ), (2)

where µ′ = B(s, x, s′, µ) is the updated belief.

In this environment, a natural question is whether the limiting distribution of

state-a
tion pairs 
orresponds to a Berk-Nash equilibrium. In the stati
 
ase, where

there is no state variable s, the answer has been shown to be yes under fairly mild

assumptions (see Esponda and Pouzo [2016℄). A remarkable feature of this result,

whi
h is shared by other equilibrium foundations, su
h as the foundation for Nash and

self-
on�rming equilibrium (e.g., Fudenberg and Kreps [1993℄, Fudenberg and Kreps

[1995℄), is that the modeler does not need to ta
kle the problem of belief updating in

order to 
hara
terize limiting behavior, but rather applies a �xed equilibrium belief.
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In the dynami
 environments that we study in this paper, the answer to our ques-

tion is more nuan
ed. We show that the answer is positive if one of three 
onditions

is satis�ed. The �rst 
ondition is that the environment is subje
tively stati
, in the

sense that the the agent believes (possibly in
orre
tly) that the 
urrent state does not

a�e
t the future state. The se
ond 
ondition is that the environment is identi�ed, a


ondition that essentially requires that the agent's belief is uniquely determined irre-

spe
tive of the agent's a
tion.

1

The third 
ondition is that all states are visited with

positive probability in the steady state. At least one of these three 
onditions is typi-


ally satis�ed in appli
ations. We show by example that if neither of these 
onditions

is satis�ed, then steady states 
annot generally be 
hara
terized by an equilibrium

approa
h where the agent holds a �xed, equilibrium belief, and this is true even if

the agent's model is 
orre
tly spe
i�ed. In 
ontrast, the modeler is for
ed to 
onsider

the more 
ompli
ated problem with belief updating, as represented by equation (2).

As we explain in Se
tion 5, the di�eren
e in results between the stati
 and dynami


settings arises from the fa
t that updating a belief 
an never de
rease the agent's 
on-

tinuation value in the stati
 
ase (be
ause of a nonnegative value of experimentation),

but it may de
rease it when both the belief and another state variable 
hange.

A few other people have also studied the problem of misspe
i�ed learning by e
o-

nomi
 agents outside the traditional stati
 setting where one agent repeatedly fa
es

the same problem every period. Blume and Easley (1998; Se
tion 5) study a 
ompet-

itive e
onomy. Bohren and Hauser [2018℄ and Fri
k, Iijima, and Ishii [forth
oming℄

study so
ial learning environments. Rabin and Vayanos [2010℄ and Ortoleva and Snowberg

[2015℄ study environments with misspe
i�
ation in non-iid settings where own a
tions

do not a�e
t beliefs (i.e., passive learning). He [2018℄ studies misspe
i�
ation in an

optimal stopping problem. Molavi [2018℄ 
onsiders a re
ursive general-equilibrium

framework that nests a 
lass of ma
roe
onomi
s models in whi
h agents learn with

misspe
i�ed models.

2

With the ex
eption of some sto
hasti
 growth problems (e.g.,

Koulovatianos et al. [2009℄), there are very few appli
ations of the types of misspe
i-

�ed, a
tive learning Markovian de
ision environments we 
onsider in this paper. By

1

Identi�
ation rules out situations where beliefs are in
orre
t due to la
k of experimentation,

whi
h is a hallmark of the bandit (e.g., Roths
hild [1974℄, M
Lennan [1984℄, Easley and Kiefer [1988℄)

and self-
on�rming equilibrium (e.g., Battigalli [1987℄, Fudenberg and Levine [1993℄, Dekel et al.

[2004℄, Fershtman and Pakes [2012℄) literatures.

2

In ma
roe
onomi
s there are several models where agents make fore
asts using statisti
al models

that are misspe
i�ed (e.g., Evans and Honkapohja [2001℄ Ch. 13, Sargent [1999℄ Ch. 6).
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proposing a tra
table equilibrium approa
h, we hope to stimulate appli
ations in this

area.

More generally, the paper is related to the literature whi
h provides learning

foundations for equilibrium 
on
epts, su
h as Nash or self-
on�rming equilibrium (see

Fudenberg and Levine [1998℄ for a survey). In 
ontrast to this literature, we 
onsider

Markov de
ision problems and allow for misspe
i�ed models. Parti
ular types of

misspe
i�
ations have been studied in extensive form games. Jehiel [1995℄ 
onsiders

the 
lass of repeated alternating-move games and assumes that players only fore
ast

a limited number of time periods into the future; see Jehiel [1998℄ for a learning

foundation.

3

We share the feature that the learning pro
ess takes pla
e within the

play of the game and that beliefs are those that provide the best �t given the data.

As with mu
h of this literature, our learning foundation for the equilibrium 
on
ept

does not guarantee that behavior 
onverges to the equilibrium, but only that if it


onverges, it must 
onverge to an equilibrium; see Se
tion 5.2 for further dis
ussion.

Finally, a parti
ular 
lass of examples that �t our framework involve a typi
al


oarseness misspe
i�
ation or a type of 
orrelation negle
t that have been studied in

previous frameworks, su
h as analogy-based expe
tation equilibrium (Jehiel [2005℄,

Jehiel and Koessler [2008℄) and Bayesian networks (Spiegler [2016, 2017℄).

The framework and equilibrium notion are presented in Se
tions 2 and 3. In

Se
tion 4, we work through several examples. We provide a foundation for equilibrium

in Se
tion 5 and 
on
lude in Se
tion 6.

2 Markov de
ision pro
esses

We begin by des
ribing the environment fa
ed by the agent.

De�nition 1. A Markov de
ision pro
ess (MDP) is a tuple 〈S,X, q0, Q, π, δ〉

where

• S is a nonempty and �nite set of states

• X is a nonempty and �nite set of a
tions

• q0 ∈ ∆(S) is a probability distribution on the initial state

3

Jehiel and Samet [2007℄ 
onsider the general 
lass of extensive form games with perfe
t infor-

mation and assume that players simplify the game by partitioning the nodes into similarity 
lasses.
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• Q : S× X → ∆(S) is a transition probability fun
tion

• π : S× X× S → R is a per-period payo� fun
tion

• δ ∈ [0, 1) is a dis
ount fa
tor

We sometimes use MDP(Q) to denote an MDP with transition probability fun
tion

Q and ex
lude the remaining primitives.

The timing is as follows. At the beginning of ea
h period t = 0, 1, 2, ..., the

agent observes state st ∈ S and 
hooses an a
tion xt ∈ X. (It is straightforward to

in
orporate a feasible set of a
tions that depends on the state.) Then a new state

st+1 is drawn a

ording to the probability distribution Q(· | st, xt) and the agent

re
eives payo� π(st, xt, st+1) in period t. The initial state s0 is drawn a

ording to

the probability distribution q0. As usual, the obje
tive of the agent is to 
hoose a

feasible poli
y rule to maximize expe
ted dis
ounted utility,

∑∞
t=0 δ

tπ(st, xt, st+1).

By the Prin
iple of Optimality, the agent's problem 
an be 
ast re
ursively as

V (s) = max
x∈X

�

S

{π(s, x, s′) + δV (s′)}Q(ds′|s, x) (3)

where V : S → R is the (unique) solution to the Bellman equation (3).

De�nition 2. An a
tion x is optimal given s in the MDP(Q) if

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δV (s′)}Q(ds′|s, x̂).

3 Subje
tive Markov de
ision pro
esses

Our main obje
tive is to study the behavior of an agent who fa
es an MDP but is

un
ertain about the transition probability fun
tion. We begin by introdu
ing a new

obje
t to model the problem with un
ertainty, whi
h we 
all the subje
tive Markov

de
ision pro
ess (SMDP). We then de�ne the notion of a Berk-Nash equilibrium of

an SMDP.

3.1 Setup

De�nition 3. A subje
tive Markov de
ision pro
ess (SMDP) is an MDP, 〈S,X, q0, Q, π, δ〉,

and a nonempty family of transition probability fun
tions, QΘ = {Qθ : θ ∈ Θ}, where
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ea
h transition probability fun
tion Qθ : S × X → ∆(S) is indexed by a parameter

value θ ∈ Θ.

We interpret the set QΘ as the di�erent transition probability fun
tions (or models

of the world) that the agent 
onsiders possible. We sometimes use SMDP(Q,QΘ) to

denote an SMDP with true transition probability fun
tionQ and a family of transition

probability fun
tions QΘ.

De�nition 4. An SMDP(Q,QΘ) is misspe
i�ed if Q /∈ QΘ; otherwise, it is 
or-

re
tly spe
i�ed. It is subje
tively stati
 if π and all elements in QΘ do not

depend on the 
urrent state. It is stati
 if, in addition to being subje
tively stati
,

the true transition probability fun
tion Q does not depend on the 
urrent state.

An SMDP des
ribes the agent's subje
tive per
eption of the environment. In

parti
ular, the agent has a 
orre
t per
eption of the state spa
e, the a
tion spa
e, and

the payo� fun
tion, but she is un
ertain about the transition probability fun
tion.

The stati
 
ase was previously studied by Esponda and Pouzo [2016℄. An SMDP is

subje
tively stati
 if the agent believes it is stati
, even though it might not a
tually

be a stati
 environment. This property will play an important role in one of our main

results.

De�nition 5. A regular subje
tive Markov de
ision pro
ess (regular-SMDP)

is an SMDP that satis�es the following 
onditions

• Θ is a 
ompa
t subset of an Eu
lidean spa
e.

• Qθ(s
′ | s, x) is 
ontinuous as a fun
tion of θ ∈ Θ for all (s, x, s′) ∈ S× X× S.

• There is a dense set Θ̂ ⊆ Θ su
h that, for all θ ∈ Θ̂, Qθ(s
′ | s, x) > 0 for all

(s, x, s′) ∈ S× X× S su
h that Q(s′ | s, x) > 0.

The �rst two 
onditions in De�nition 5 pla
e parametri
 and 
ontinuity assump-

tions on the subje
tive models.

4

The last 
ondition plays two roles. First, it rules

4

Without the assumption of a �nite-dimensional parameter spa
e, Bayesian updating need not


onverge to the truth for most priors and parameter values even in 
orre
tly spe
i�ed statisti
al

settings (Freedman [1963℄, Dia
onis and Freedman [1986℄). Note that the parametri
 assumption

is only a restri
tion if the set of states or a
tions is non�nite, a 
ase we 
onsider in some of the

examples.

7



out a stark form of misspe
i�
ation by guaranteeing that there exists at least one

parameter value that 
an rationalize every feasible observation. Se
ond, it implies

that the 
orresponden
e of parameters that are a 
losest �t to the true model, to be

de�ned in the next se
tion, is upper hemi
ontinuous, whi
h in parti
ular will imply

existen
e of equilibrium.

3.2 Equilibrium

The goal of this se
tion is to de�ne the notion of Berk-Nash equilibrium of an SMDP.

The goal of the solution 
on
ept is to predi
t a distribution over out
omes (meaning

state-a
tion pairs), m ∈ ∆(S×X), as a fun
tion of the primitives of the environment.

In Se
tion 5, we will interpret an equilibrium distribution over state-a
tion pairs as

the limiting frequen
y of state-a
tion pairs in an environment where the agent is

Bayesian and updates her belief about the transition probability fun
tion in ea
h

period.

Notation. For a given probability distribution over state-a
tion pairs, m ∈ ∆(S×

X), we will denote the marginal over S by mS, the marginal over X by mX, and the

two 
onditional probability distributions by mX|S and mS|X. We sometimes abuse

notation and eliminate the subs
ripts when referring to marginals and 
onditional

distributions if there is no room for 
onfusion.

The next de�nition will be used to pla
e 
onstraints on the agent's equilibrium

belief µ ∈ ∆(Θ) when the equilibrium distribution over state-a
tion pairs is m.

De�nition 6. The weighted Kullba
k-Leibler divergen
e (wKLD) is a mapping

KQ : ∆(S× X)×Θ → R̄+ su
h that for any m ∈ ∆(S× X) and θ ∈ Θ,5

KQ(m, θ) =
∑

(s,x)∈S×X

EQ(·|s,x)

[

ln

(

Q(S ′|s, x)

Qθ(S ′|s, x)

)]

m(s, x).

The set of 
losest parameter values given m ∈ ∆(S× X) is the set

ΘQ(m) ≡ argmin
θ∈Θ

KQ(m, θ).

5

We follow the standard 
onvention that ln(0) · 0 = 0.
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The set ΘQ(m) 
an be interpreted as the set of parameter values that 
onstitute

the best �t with the true transition probability fun
tion Q when out
omes are drawn

from the distribution m.

Lemma 1. (i) For every m ∈ ∆(S × X) and θ ∈ Θ, KQ(m, θ) ≥ 0, with equality

holding if and only if Qθ(· | s, x) = Q(· | s, x) for all (s, x) su
h that m(s, x) > 0.

(ii) For any regular SMDP(Q,QΘ), m 7→ ΘQ(m) is non-empty, 
ompa
t valued, and

upper hemi
ontinuous.

Proof. See Appendix A.1.

We now de�ne equilibrium.

De�nition 7. A probability distribution over state-a
tion pairs, m ∈ ∆(S × X), is

a Berk-Nash equilibrium of the SMDP(Q,QΘ) if there exists a belief µ ∈ ∆(Θ)

su
h that (i) and (ii) below hold,

(i) (optimality) For all (s, x) ∈ S× X su
h that m(s, x) > 0, x is optimal given s

in the MDP(Q̄µ), where Q̄µ =
�

Θ
Qθµ(dθ),

(ii) (belief restri
tion) µ ∈ ∆(ΘQ(m)),

and, moreover, the following 
ondition holds:

(iii) (stationarity) For all s′ ∈ S, mS(s
′) =

∑

(s,x)∈S×X
Q(s′ | s, x)m(s, x).

Condition (i) in the de�nition of Berk-Nash equilibrium requires a
tions to be

optimal in the MDP where the transition probability fun
tion is

�

Θ
Qθµ(dθ). Con-

dition (ii) requires that the agent only puts positive probability on the set of 
los-

est parameter values given m, ΘQ(m). Finally, to interpret 
ondition (iii), note

that, for states that o

ur with positive probability, we 
an repla
e m(s, x) with

mX|S(x | s)mS(s) in the RHS of the expression. In parti
ular, we 
an think of the

agent as following the strategy of 
hoosing a
tions a

ording to the probability dis-

tribution mX|S(· | s) ∈ ∆(X) in state s. Thus, the equilibrium transition probability

fun
tion over states is given by s 7→ Q(·|s, x)mX|S(x | s), and 
ondition (iii) simply

says that mS is an invariant distribution for this equilibrium transition probability

fun
tion. In the spe
ial 
ase of a stati
 environment, our de�nition 
ollapses to the

single-agent de�nition in Esponda and Pouzo [2016℄.

The next result establishes existen
e of equilibrium in any regular SMDP.
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Theorem 1. For any regular SMDP, there exists a Berk-Nash equilibrium.

Proof. See Appendix A.2.

3.3 Identi�
ation

Identi�
ation plays an important role in the results that follow. In statisti
s, iden-

ti�
ation refers to the 
apa
ity to infer a unique data generating pro
ess from the

observed, exogenous data. In our environment, the notion of identi�
ation is a bit

more nuan
ed, be
ause the data observed by the agent is endogenous, in the sense

that it depends on the agent's a
tions. Thus, following Esponda and Pouzo [2016℄, it

is natural to 
onsider two notions of identi�
ation. These notions distinguish between

out
omes on and o� the equilibrium path.

De�nition 8. An SMDP is weakly identi�ed givenm ∈ ∆(S×X) if θ, θ′ ∈ ΘQ(m)

implies thatQθ(· | s, x) = Qθ′(· | s, x) for all (s, x) ∈ S×X su
h thatm(s, x) > 0; if the


ondition is satis�ed for all (s, x) ∈ S×X, we say that the SMDP is identi�ed given

m. An SMDP is (weakly) identi�ed if it is (weakly) identi�ed for allm ∈ ∆(S×X).

Weak identi�
ation implies that, for any equilibrium distributionm, the agent has

a unique belief along the equilibrium path, i.e., for states and a
tions that o

ur with

positive probability. But there 
ould be many beliefs 
onsistent with what happens for

those state-a
tion pairs that have zero probability. Thus, weak identi�
ation allows

one to 
apture bandit situations, where the agent settles for an a
tion but may have

in
orre
t beliefs about the bene�ts she would have obtained with a di�erent a
tion.

Weak identi�
ation is a fairly weak 
ondition and its failure is often asso
iated with

knife-edge 
ases (see, for example, the 
oin example by Berk [1966℄).

Identi�
ation strengthens the de�nition of weak identi�
ation by requiring that

beliefs are unique also o� the equilibrium path. Under identi�
ation, it is as if the

agent 
an eventually learn (possibly in
orre
tly) the primitives of the environment

irrespe
tive of her 
hoi
e of a
tions.

Proposition 1. Consider a 
orre
tly spe
i�ed and identi�ed SMDP with 
orrespond-

ing MDP(Q). If m is a Berk-Nash equilibrium of the SMDP then, for all (s, x) in the

support of m, x is optimal given s in the MDP(Q).

10



Proof. Suppose m is a Berk-Nash equilibrium. Then there exists µ ∈ ∆(ΘQ(m)) su
h

that, for all (s, x) in the support of m, x is optimal given s. Be
ause the SMDP is


orre
tly spe
i�ed, there exists θ∗ su
h that Qθ∗ = Q and, therefore, by Lemma 1(i),

θ∗ ∈ ∆(ΘQ(m)). Then, by identi�
ation, any θ̂ ∈ ΘQ(m) satis�es Qθ̂ = Qθ∗ = Q,

implying that, for all (s, x) in the support of m, x is also optimal given s in the

MDP(Q).

Proposition 1 says that, in environments where the agent is un
ertain about the

transition probability fun
tion but her subje
tive model is both 
orre
tly spe
i�ed

and identi�ed, then Berk-Nash equilibrium 
orresponds to the solution of the MDP

under 
orre
t beliefs about the transition probability fun
tion.

4 Examples

Appli
ations in the literature on agents with misspe
i�ed models have for the most

part 
on
entrated on stati
 environments. We hope that the equilibrium 
on
ept

developed in this paper en
ourages resear
hers to explore misspe
i�
ation in the types

of dynami
 environments that are 
entral to many e
onomi
 appli
ations. For this

purpose, we pi
k three standard dynami
 environments and, for ea
h 
ase, introdu
e

a novel misspe
i�
ation and show how the equilibrium 
on
ept 
an be used to derive


on
rete predi
tions. Overall, we hope to 
onvey that Berk-Nash equilibrium 
an

help expand the s
ope of the 
lassi
al dynami
 programming approa
h in e
onomi
s.

Some of the examples in this se
tion assume, for 
onvenien
e, a non-�nite set

of a
tions and states. While the equilibrium 
on
ept extends in a straightforward

manner to non-�nite settings, the proofs of the results we provide in the next se
tion

rely on �niteness assumptions and we leave the extension to non-�nite settings for

further work.

4.1 Dynami
 e�ort task

We use the following stylized version of a dynami
 e�ort task to illustrate the steps

required to �nd a Berk-Nash equilibrium.

MDP: In ea
h period t, the agent 
hooses whether to put high or low e�ort in

a task, xt ∈ X = {H,L}, where H represents high e�ort and L low e�ort. The task

then fails or su

eeds, st+1 ∈ S = {0, 1}, where 0 denotes failure and 1 su

ess. The
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payo� is π(L, st+1) = st+1 under low e�ort and π(H, st+1) = st+1−c under high e�ort,

where c is the 
ost of high e�ort. The probability of a su

ess is 1 if the agent puts

high e�ort: Q(1 | s,H) = 1 for all s ∈ {0, 1}. The probability of su

ess if the agent

puts low e�ort depends on the state: The probability of su

ess is q0 ≡ Q(1 | 0, L)

if the last task resulted in a failure and q1 ≡ Q(1 | 1, L) if it resulted in a su

ess.

This simple setup 
aptures several problems where the agent's su

ess depends not

only on her a
tion but also on a previous su

ess or failure. For example, a �rm

that sells a produ
t today may in
rease its 
han
es of selling a produ
t tomorrow due

to word-of-mouth advertising. Or an agent who su

eeds on a task today may feel

motivated and �nd it easier to su

eed on the task tomorrow for the same level of

e�ort.

For 
on
reteness, we assume that

0 < q0 < 1− c < q1 < 1. (4)

In parti
ular, the probability of a su

ess under low e�ort is higher if the past task

was a su

ess 
ompared to failure. A myopi
 agent who knows the primitives will

�nd it optimal to 
hoose H in state s = 0 (be
ause q0, the expe
ted payo� from L,

is lower than 1− c, the payo� from H) and L in state s = 1 (be
ause 1− c < q1). It

is also relatively easy to see that this strategy is optimal irrespe
tive of the dis
ount

fa
tor of the agent.

SMDP. The agent believes, in
orre
tly, that the e�ort task is not dynami
. For-

mally, QΘ = {Qθ : θ ∈ Θ}, where Θ = [0, 1] and, for all θ ∈ Θ, Qθ(1 | s,H) = 1 and

Qθ(1 | s, L) = θ for all s ∈ {0, 1}. In parti
ular, the agent knows that the probability

of su

ess is one if she puts high e�ort, but the agent does not know the probability

of su

ess if she puts low e�ort. Moreover, the agent believes that the probability of

su

ess under low e�ort is independent of the 
urrent state. For example, the �rm

might be unaware that word-of-mouth advertising is important or the agent may fail

to take into a

ount how performan
e todays a�e
ts her motivation tomorrow. This

is an example of a subje
tively stati
 SMDP be
ause the 
ontemporaneous payo�

fun
tion π and the per
eived transitions do not depend on the 
urrent state.

Equilibrium. For simpli
ity, we restri
t attention to equilibria satisfying the

natural re�nement that the agent's a
tion does not depend on the state: mL ≡

mX|S(L | 0) = mX|S(L | 1) and 1 − mL = mX|S(H | 0) = mX|S(H | 1). This is a
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natural re�nement be
ause the agent does not think the 
urrent state matters, but it

potentially leaves out mixed-strategy equilibria where the agent is indi�erent between

the two a
tions and for some reason de
ides to use a tie-breaking rule that depends

on the state.

Stationarity. Condition (iii) in the de�nition of Berk-Nash equilibrium requires

mS(1) =
∑

(s,x)∈S×X

Q(1 | s, x)mX|S(x | s)mS(s)

= (1−mL) +mL (q0mS(0) + q1mS(1)) ,

and, solving this equation for mS(1), we obtain the stationary probability of s = 1 as

a fun
tion of the agent's behavior, mL:

mS(1) =
1−mL(1− q0)

1−mL(q1 − q0)
. (5)

Beliefs. The wKLD is given by

KQ(m, θ) =
∑

(s,x)∈S×X

mX|S(x | s)mS(s)
∑

s′∈S

Q(s′ | s, x) ln
Q(s′ | s, x)

Qθ(s′ | s, x)

= −mL{mS(0)(q0 ln θ + (1− q0) ln(1− θ))

+mS(1)(q1 ln θ + (1− q1) ln(1− θ))}+ Const,

where Const is a term that does not depend on θ.

If mL > 0, then

θQ(m) = (1−mS(1))q0 +mS(1)q1 (6)

is the unique parameter value that minimizes the wKLD fun
tion. Intuitively, (6) is a

weighted average of the probabilities that low e�ort yields a su

ess in ea
h state, q0

and q1, where the weights are given by the stationary probabilities of ea
h state. If,

however, mL = 0, the wKLD is 
onstant in the parameter and any θ ∈ Θ minimizes

wKLD.

We will make a se
ond re�nement and restri
t attention to equilibria where (6) is

the unique minimizer even if L is 
hosen with probability zero, mL = 0. One rationale

is that the agent has a small but vanishing probability of trembling, and, 
onsistent

with the �rst restri
tion, this probability does not depend on the state.
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Optimality. Be
ause the agent believes that the problem is stati
, the optimal

strategy is to 
hoose the a
tion that maximizes 
urrent period's payo�. Let

D(θ) ≡ θ − (1− c) (7)

denote the per
eived expe
ted payo� di�eren
e of 
hoosing L vs. H under the belief

that the parameter value is θ with probability 1. If D(θ) > 0, then L is the unique

optimal strategy: mL = 1. If, on the other hand, D(θ) < 0, then H is the unique

optimal strategy: mL = 0. Finally, if D(θ) = 0, there is no restri
tion on mL.

Equilibrium. By equation (5) and assumption (4), mS(1) is 
ontinuous and de-


reasing as a fun
tion of mL. Intuitively, the higher the probability of low e�ort, the

lower is the stationary probability of being in the state s = 1 where the task is su
-


essful. Also by equation (6) and assumption (4), θQ(m) is 
ontinuous and in
reasing

as a fun
tion of mS(1). Thus, we 
an 
ombine equations (5) and (6) to produ
e a

mapping whi
h, in a slight abuse of notation, we denote by mL 7→ θQ(mL) that is


ontinuous and de
reasing: As mL in
reases, the probability of state s = 1, mS(1),

de
reases, whi
h in turn yields a de
rease in θQ.

Finally, we take the mapping mL 7→ θQ(mL) together with equation (7) to form

the mapping whi
h, in a slight abuse of notation, we denote by mL 7→ D(mL), where

D(mL) = θQ(mL) − (1 − c) is the agent's per
eived expe
ted payo� di�eren
e of


hoosing L vs. H under the belief that minimizes KLD when the agent 
hooses no

e�ort with probability mL. Simple algebra (
ombining equations (5), (6), and (7))

shows that

D(mL) = (q1 −mL(q1 − q0))/(1−mL(q1 − q0))− (1− c). (8)

The mapping mL 7→ D(mL) is de
reasing be
ause, as explained earlier, mL 7→

θQ(mL) is de
reasing. To �nd the equilibria, it is 
onvenient to �rst 
ompute D(0)

and D(1). Simple algebra yields D(0) = q1 − (1− c) > 0. Intuitively, if mL = 0 then

the agent is spending all the time in state s = 1, and so a small tremble resulting

in a
tion L o

urs in a state where the probability of su

ess is q1. Thus, a small

tremble leads the agent to believe that the probability of su

ess under L is q1. Sin
e

q1 > 1−c, the agent would then like to deviate and 
hoose L with positive probability.

As mL in
reases, however, state s = 0 be
omes more likely and the agent be
omes

more pessimisti
 about the probability of a su

ess under L.
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Figure 1: Equilibrium of the dynami
 e�ort environment

The most pessimisti
 belief for the agent is at mL = 1. Simple algebra yields

D(1) = q0/(1− (q1− q0))− (1− c). If the primitives (q0, c, q1) are su
h that D(1) ≥ 0,

then there is a unique equilibrium where m∗
L = 1. If, however, D(1) < 0 then there

is a unique equilibrium and it given by the mixed a
tion m∗
L ∈ (0, 1) that solves

D(m∗
L) = 0. Using the expression in (8), it is easy to see that the mixed equilibrium

a
tion is given by m∗
L = (q1 − (1− c))/(c(q1 − q0)).

Figure 1 shows an example where the equilibrium a
tion is mixed. In addition

to demonstrating the me
hani
s underlying the equilibrium 
on
ept, this example

illustrates the importan
e of allowing the agent to take mixed a
tions, a feature that

is not needed in standard dynami
 optimization settings.

4.2 Sto
hasti
 growth with 
orrelated sho
ks

Sto
hasti
 growth models have been 
entral to studying optimal intertemporal allo
a-

tion of 
apital and 
onsumption sin
e the work of Bro
k and Mirman [1972℄. Freixas

[1981℄ and Koulovatianos et al. [2009℄ assume that agents learn the distribution over

produ
tivity sho
ks with 
orre
tly spe
i�ed models. We follow Hall, Robert E. [1997℄

and subsequent literature in in
orporating sho
ks to both preferen
es and produ
-

tivity. We show that there is underinvestment in equilibrium whenever sho
ks are

positively 
orrelated but agents fail to a

ount for this 
orrelation.
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MDP. In ea
h period t, an agent observes st = (yt, zt) ∈ S = R+×{L,H}, where

yt is wealth and zt is an i.i.d. utility sho
k, and 
hooses how mu
h wealth to save,

xt ∈ [0, yt] ⊆ X = R+, 
onsuming the rest. Current period utility is π(yt, zt, xt) =

zt ln(yt − xt). Wealth next period, yt+1, is given by

ln yt+1 = α∗ + β∗ ln xt + εt, (9)

where εt = γ∗zt + ξt is an unobserved i.i.d. produ
tivity sho
k, ξt ∼ N(0, 1), and 0 <

δβ∗ < 1, where δ ∈ [0, 1) is the dis
ount fa
tor. The utility sho
k 
an be interpreted

as a sho
k to home or non-market produ
tion te
hnologies (e.g., Ben
ivenga [1992℄).

We assume that γ∗ > 0, so that the utility and produ
tivity sho
ks are positively


orrelated. For example, te
hnologi
al advan
es in
rease produ
tivity of both market

and non-market a
tivities. Let 0 < L < H and let q ∈ (0, 1) be the probability that

the sho
k is H . Formally, Q(y′, z′ | y, z, x) is su
h that y′ and z′ are independent, y′

has a log-normal distribution with mean α∗ + β∗ ln x + γ∗z and unit varian
e, and

z′ = H with probability q.

SMDP. The agent believes that

ln yt+1 = α + β ln xt + εt, (10)

where εt ∼ N(0, 1) and is independent of the utility sho
k. For simpli
ity, we assume

that the agent knows the distribution of the utility sho
k, and is un
ertain about

θ = (α, β) ∈ Θ = R2
. The subje
tive transition probability fun
tion Qθ(y

′, z′ |

y, z, x) is su
h that y′ and z′ are independent, y′ has a log-normal distribution with

mean α + β ln x and unit varian
e, and z′ = H with probability q. The agent has a

misspe
i�ed model be
ause she believes that the produ
tivity and utility sho
ks are

independent when in fa
t γ∗ 6= 0.

Equilibrium. Optimality. The Bellman equation for the agent is

V (y, z) = max
0≤x≤y

z ln(y − x) + δE [V (Y ′, Z ′) | x]

and it is straightforward to verify that the optimal strategy is to invest a fra
tion

of wealth that depends on the utility sho
k and the unknown parameter β, i.e., x =

Az(β) · y, where AL(β) =
δβ((1−q)L+qH)

(1−δβ(1−q))H+δβ(1−q)L
and AH(β) =

δβ((1−q)L+qH)
δβqH+(1−δβq)L

< AL(β),

provided that βδ < 1, whi
h will be true in equilibrium. For the agent who knows the
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primitives, the optimal strategy is to invest fra
tions AL(β
∗) and AH(β

∗) in the low

and high state, respe
tively. Sin
e β 7→ Az(β) is in
reasing, the equilibrium strategy

of a misspe
i�ed agent 
an be 
ompared to the optimal strategy by 
omparing the

equilibrium belief about β with the true β∗
.

Beliefs and stationarity. Let A = (AL, AH), with AH < AL, represent a strategy,

where Az is the proportion of wealth invested given utility sho
k z. Be
ause the

agent believes that εt is independent of the utility sho
k and normally distributed,

the minimizers of the wKLD fun
tion are the estimands of a linear regression model,

whi
h are unique, and, therefore, this SMDP is identi�ed provided the agent invests

more than zero with positive probability.

6

In parti
ular, for a strategy represented

by A = (AL, AH), the parameter value β̂(A) that minimizes wKLD is

β̂(A) =
Cov(lnY ′, lnX)

V ar(lnX)
=

Cov(lnY ′, ln(AZY ))

V ar(ln(AZY ))

= β∗ + γ∗ Cov(Z, lnAZ)

V ar(lnAZ) + V ar(lnY )
.

where Cov and V ar are taken with respe
t to the (true) distribution of (Y, Z). Sin
e

AH < AL, then Cov(Z, lnAZ) < 0. Therefore, the assumption that γ∗ > 0 implies

that the bias β̂(A) − β∗
is negative and its magnitude depends on the strategy A.

Intuitively, the agent invests a larger fra
tion of wealth when z is low, whi
h happens

to be during times when ε is also low.

Equilibrium. We establish that there exists at least one equilibrium with pos-

itive investment by showing that there is at least one �xed point of the mapping

β 7→ β̂(AL(β), AH(β)). This mapping is 
ontinuous and satis�es β̂(AL(0), AH(0)) =

β̂(AL(1/δ), AH(1/δ)) = β∗
and β̂(AL(β), AH(β)) < β∗

for all β ∈ (0, 1/δ). Then,

sin
e δβ∗ < 1, there is at least one �xed point βM
, and any �xed point satis�es

βM ∈ (0, β∗). Thus, the misspe
i�ed agent underinvests in equilibrium 
ompared to

the optimal strategy.

7

The 
on
lusion is reversed if γ∗ < 0, illustrating how the frame-

6

From equation (10) and Gaussianity of the residuals, the wKLD is proportional to the expe
ted

(under the true measure) square of the residual in expression (10). Thus, the minimizers of the

wKLD 
oin
ide with the values of (α, β) that provide the best �t under this loss when the data is

distributed a

ording to the true probability measure.

7

It is also an equilibrium not to invest, A = (0, 0), supported by the belief β∗ = 0, whi
h

annot be dis
on�rmed sin
e investment does not take pla
e. But this equilibrium is not robust

to experimentation (e.g., it does not survive a re�nement where the belief when not investing is

required to be the limit of the belief as the fra
tion invested goes to zero).
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work provides predi
tions about beliefs and behavior that depend on the primitives

(as opposed to simply postulating that the agent is over or under-
on�dent about

produ
tivity).

4.3 Produ
tion with un
ertain 
ost

Finally, we 
onsider an agent who produ
es with un
ertain 
osts. This example il-

lustrates two features of the framework. First, unlike the previous examples, the

agent knows the dynami
s governing the state variable. Instead, the agent has un-


ertainty about the per-period payo�. The example shows how to in
orporate this

kind of un
ertainty into the framework. Se
ond, in 
ontrast to the previous examples,

where the agent dire
tly omitted a variable or negle
ted a 
orrelation, we 
onsider a


ase where the agent in
orporates all relevant variables into her model but uses an

in
orre
t fun
tional form.

MDP. Ea
h period t, an agent observes a produ
tivity sho
k z ∈ Z = {z1, ..., zK} ⊂

R+ and 
hooses an input x ∈ X ⊂ R+. As a result, the agent obtains a payo� of

z ln x − c(x) in that period, where c(x) = φ(x)ǫ is the 
ost of 
hoosing x, and ǫ is a

random, independent 
ost sho
k distributed a

ording to the distribution p∗, whi
h

has support equal to [0,∞). Let Q(z′ | z) be the probability that tomorrow's pro-

du
tivity sho
k is z′ given the 
urrent sho
k z. We assume that there is a unique

stationary distribution over these produ
tivity sho
ks, denoted by q = (q1, ..., qK).

SMDP. The agent knows all the primitives ex
ept the 
ost fun
tion c(·). The

agent believes that cθ(x) = xǫ and ǫ ∼ pθ where pθ has support equal to [0,∞).

For 
on
reteness, we assume that ǫ follows an exponential distribution, pθ(ǫ) =

(1/θ)e−(1/θ)ǫ
. In parti
ular, the agent's model is misspe
i�ed if either 
ost is non-

linear, i.e., φ(·) is nonlinear, or the true distribution over 
ost sho
ks, p∗, does not

belong to the exponential family.

The framework presented in this paper assumes that the agent knows the per-

period payo� fun
tion and may be un
ertain about the transition fun
tion. To �t

this example into the framework, we simply let the 
ost c be part of the state as

follows:

V (z, c) = max
x

�

(zf(x)− c′ + δV (z′, c′))Q(dz′ | z)QC(dc′ | x).

The variable c′ is the unknown 
ost of produ
tion at the time the agent has to 
hoose
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x. Its distribution is given by QC(dc′ | x), whi
h is the distribution of c′ = c(x)

as des
ribed above. The agent knows Q but does not know QC
. In parti
ular, the

agent has a parametri
 family of transitions, where QC
θ (dc

′ | x) is the distribution of

c′ = cθ(x).

Equilibrium. Optimality. Suppose the agent has a degenerate belief on some θ.

Be
ause the transition of c′ does not depend on c and the transition of z′ does not

depend on x, the agent's optimization problem redu
es to the following simple stati


optimization problem: maxx z ln x − xEθ [ǫ]. Noting that Eθ [ǫ] = θ, it follows that

the optimal input 
hoi
e in state zj is

xj = zj/θ (11)

for j ∈ {1, ..., K}.

Stationarity. The stationarity 
ondition implies that the marginal of m over Z

is equal to the stationary distribution over z, whi
h is given by q = (q1, ..., qK).

Therefore, the stationary distribution over X, denoted bymX, is given bymX(xj) = qj ,

where xj satis�es equation (11), and it is equal to zero otherwise.

Beliefs. The part of the wKLD fun
tion that depends on θ is given by

∑

x

EQ(·|x)

[

logQC
θ (c

′ | x)
]

mX(x) =
∑

j

EQ(·|xj) [log pθ (c
′/xj)] qj

=
∑

j

EQ(·|xj)

[

−
1

θ
(c′/xj)− ln θ

]

qj

= −
1

θ
Ep∗ [ǫ]

∑

j

(φ(xj)/xj)qj − ln θ.

There is a unique parameter value θ that maximizes this expression, and so this

SMDP is identi�ed. This unique minimizer is given by

θ = Ep∗ [ǫ]
∑

j

(φ(xj)/xj)qj . (12)

The RHS of this expression is a weighted average of the expe
ted average 
osts. This

expression depends on the assumption that ǫ follows an exponential distribution, and

it would di�er for di�erent families of distributions. For example, for the 
ase of the

log-normal distribution, the average 
ost should be repla
ed by the logarithm of the
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average 
ost.

Equilibrium. To solve for equilibrium, we �rst 
ombine equations (11) and (12) to

obtain

θ∗ = Ep∗[ǫ]
∑

j

(θ∗φ(zj/θ
∗)/zj)qj (13)

A solution θ∗ to equation (13) 
orresponds to an equilibrium belief. To �nd the

equilibrium a
tion as a fun
tion of the sho
k, we simply repla
e the equilibrium belief

θ∗ into the optimality 
ondition (11). To illustrate, suppose that the true 
ost fun
tion

is quadrati
, i.e., φ(x) = x2
. Then there is a unique solution to (13) and, therefore, a

unique equilibrium belief θ∗ = (Ep∗ [ǫ]Eq[z])
1/2

and a
tion

x∗
j = zj/(Ep∗ [ǫ]Eq[z])

1/2. (14)

We 
an 
ontrast this expression with the optimal a
tion of an agent who knows the


orre
t primitives and solves maxx z ln x−x2Ep∗ [ǫ], thus obtaining the optimal a
tion

xopt
j = (zj/(2Ep∗[ǫ]))

1/2 . (15)

The optimal a
tion depends on the produ
tivity sho
k, while the optimal a
tion for

the misspe
i�ed agent depends on both the sho
k and the average sho
k. The reason

is that the agent in
orre
tly believes the marginal 
ost is 
onstant, and learns this

marginal 
ost by averaging over the marginal 
osts experien
ed in equilibrium, and

the distribution over these experien
ed 
osts depends on the stationary distribution

over all sho
ks. Comparing (14) and (15), we also observe that the misspe
i�ed

agent 
hooses a
tions lower than optimal if zj ≤ Eq[z]/2 and higher than optimal if

zj ≥ Eq[z]/2. Intuitively, the agent overestimates the marginal 
ost of low a
tions, and

these low a
tions are taken when the sho
k is low. Similarly, the agent underestimates

the marginal 
ost of high a
tions, and these a
tions are taken when the sho
k is high.

5 Equilibrium foundation

Following the tradition of providing learning foundations for equilibrium 
on
epts, in

this se
tion we study the problem of an agent who fa
es a regular SMDP, starts with
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a prior µ0 ∈ ∆(Θ) over the set of models of the world Θ, and updates the prior in

ea
h period as a result of observing the 
urrent state, her a
tion, and the new state.

Our main obje
tive is to understand under whi
h 
onditions the agent's steady state

behavior 
an be represented by a Berk-Nash equilibrium.

5.1 Bayesian learning in SMDPs

Consider an agent who fa
es a regular SMDP and has a prior µ0 ∈ ∆(Θ), whi
h

is assumed to have full support. The prior is updated in ea
h period using Bayes'

rule, where µ′ = B(s, x, s′, µ) is the posterior for any prior µ, 
urrent state s, a
tion

x, and realized future state s′, and, for any (s, x, s′) ∈ S × X × S, the Bayesian

operator B(s, x, s′, ·) : Ds,x,s′ → ∆(Θ) is de�ned as follows: For all A ⊆ Θ Borel,

B(s, x, s′, µ)(A) =
�

A
Qθ(s

′ | s, x)µ(dθ)/
�

Θ
Qθ(s

′ | s, x)µ(dθ) for any µ ∈ Ds,x,s′,

where Ds,x,s′ = {p ∈ ∆(Θ):
�

Θ
Qθ(s

′ | s, x)p(dθ) > 0}.

By the Prin
iple of Optimality, the agent's problem 
an be 
ast re
ursively as

W (s, µ) = max
x∈X

�

S

{π(s, x, s′) + δW (s′, µ′)} Q̄µ(ds
′|s, x), (16)

where Q̄µ =
�

Θ
Qθµ(dθ), µ

′ = B(s, x, s′, µ) is next period's belief, updated using

Bayes' rule, and W : S×∆(Θ) → R is the (unique) solution to the Bellman equation

(16). Compared to the 
ase where the agent knows the transition probability fun
tion,

the agent's belief about Θ is now part of the state spa
e.

De�nition 9. A poli
y fun
tion is a fun
tion f : S × ∆(Θ) → ∆(X), where

f(x | s, µ) denotes the probability that the agent 
hooses x if she is in state s and

her belief is µ. A poli
y fun
tion f is optimal if, for all s ∈ S, µ ∈ ∆(Θ), and x ∈ X

su
h that f(x | s, µ) > 0,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ))} Q̄µ(ds
′|s, x̂).

Let h = (s0, x0, ..., st, xt, ...) represent an in�nite history of state-a
tion pairs

and let H ≡ (S × X)∞ represent the spa
e of in�nite histories. For every t, let

µt : H → ∆(Θ) denote the agent's belief at time t, de�ned re
ursively by µt(h) =

B(st−1, xt−1, st, µt−1(h)) whenever B is the Bayesian operator, and arbitrary other-

wise. Hen
eforth, we drop the history h from the notation.
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In ea
h period t, there is a state st and a belief µt, and the agent 
hooses a (possibly

mixed) a
tion f(· | st, µt) ∈ ∆(X).8 After an a
tion xt is realized, the state st+1 is

drawn from the true transition probability. The agent observes the realized a
tion and

the new state and updates her belief to µt+1 using Bayes' rule. The primitives of the

problem (in
luding the initial distribution over states, q0, and the prior, µ0 ∈ ∆(Θ))

and a poli
y fun
tion f indu
e a probability distribution over H that is de�ned in a

standard way; let P
f
denote this probability distribution over H.

We now de�ne out
omes as random variables. For every t, we de�ne the frequen
y

of state-a
tion pairs at time t to be a fun
tion mt : H → ∆(S× X) su
h that, for all

h, and (s, x) ∈ S× X,

mt(h)(s, x) =
1

t

t
∑

τ=0

1(s,x)(sτ , xτ )

is the frequen
y of times that the out
ome (s, x) o

urs up to time t. One reasonable


riteria to 
laim that the agent has rea
hed a steady-state is that the time average of

out
omes 
onverges.

The next result establishes that, if the frequen
y of state-a
tion pairs 
onverges

to m, then beliefs be
ome in
reasingly 
on
entrated on ΘQ(m).

Lemma 2. Let Q denote the true transition probability fun
tion and f the poli
y

fun
tion. Suppose that (mt)t 
onverges to m for all histories in a set H ⊆ H su
h that

Pf (H) > 0. Then, for all open sets U ⊇ ΘQ(m), limt→∞ µt (U) = 1 Pf
-a.s.- in H.

Proof. See Appendix A.3.

The proof adapts the proof of Lemma 2 by Esponda and Pouzo [2016℄ to dynami


environments and the reader is referred to that paper for an intuitive explanation of

the result.

9

The following result provides a learning foundation for the notion of Berk-Nash

equilibrium of an SMDP.

8

In parti
ular, it would be straightforward to introdu
e payo� perturbations to our environment

so that the agent's behavior at time t would be given by a nondegenerate distribution over a
tions.

9

The seminal result providing asymptoti
 
hara
terization of Bayesian beliefs when the data

generating pro
ess is exogenous (i.e., absent any a
tions) is due to Berk [1966℄; see also

Bunke and Milhaud [1998℄ and Shalizi [2009℄ for extensions.
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Theorem 2. Let f be an optimal poli
y fun
tion. Suppose that (mt)t 
onverges to m

with Pf
-positive probability and that the SMDP is weakly identi�ed given m. Suppose

also that one of the following 
onditions hold:

1. The SMDP is subje
tively stati
.

2. The SMDP is identi�ed given m.

Then m is a Berk-Nash equilibrium of the SMDP.

Proof. See Appendix A.4.

Theorem 2 provides a learning justi�
ation for Berk-Nash equilibrium. The main

idea behind the proof is as follows. For ea
h state-a
tion pair (s, x) in the support

of m, there exists a subsequen
e of state-a
tion pairs and beliefs su
h that (s, x) is

played along the entire subsequen
e. Moreover, we 
an �nd a sub-subsequen
e where

the belief 
onverges; let µs,x ∈ ∆(S × X) denote this limiting belief under whi
h

(s, x) realizes. Sin
e (mt)t 
onverges to m, we 
an apply Lemma 2 to 
on
lude that

µs,x ∈ ∆(ΘQ(m)). Thus, by optimality of f and the upper hemi
ontinuity of the


orresponden
e of optimal a
tions, it follows that for any state s and any a
tion x

in the support of m(· | s), x is optimal in the dynami
 optimization problem with


urrent belief µs,x, i.e.,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, µ′)} Q̄µs,x
(ds′|s, x̂). (17)

Consider �rst the 
ase where the SMDP is subje
tively stati
. In this 
ase, the

value fun
tion W only depends on the agent's belief, and, slightly abusing notation,

(17) implies that

EQ̄µs,x (·|x)
[π(x, S ′) + δW (B(x, S ′, µs,x))] ≥ EQ̄µs,x (·|y)

[π(y, S ′) + δW (B(y, S ′, µs,x))]

(18)

for any other a
tion y. By weak identi�
ation, B(x, s′, µs,x) = µs,x for all s′ that

o

ur with positive probability a

ording to µs,x, and so the LHS of (18) be
omes

EQ̄µs,x (·|x)
[π(x, S ′) + δW (µs,x))]. Next, we add and subtra
t δW (µs,x) from the RHS

of (18) to obtain

EQ̄µs,x (·|y)
[π(y, S ′) + δW (µs,x)] + δEQ̄µs,x (·|y)

[W (B(y, S ′, µs,x))−W (µs,x)] . (19)
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The se
ond term in (19) is what is known in the literature as the value of experimen-

tation: It is the di�eren
e in net present value between starting next period with up-

dated beliefB(y, S ′, µs,x), whi
h depends on the a
tion y and the random realization of

S ′
, and starting next period with the 
urrent belief µs,x. By the Martingale property of

Bayesian updating and the 
onvexity of the value fun
tion, it follows that the value of

experimentation is nonnegative; formally, EQ̄µs,x (·|y)
[W (B(y, S ′, µs,x))−W (µs,x)] ≥

W (EQ̄µs,x (·|y)
[B(y, S ′, µs,x)])−W (µs,x) = 0. It then follows that EQ̄µs,x (·|x)

[π(x, S ′)] ≥

EQ̄µs,x (·|y)
[π(y, S ′)]. Thus, for any (s, x) in the support of m, there exists a belief µs,x

su
h that x is optimal when the belief is �xed at µs,x. Finally, weak identi�
ation im-

plies that all the beliefs in {µs,x : m(s, x) > 0} yield the same probability distribution

over next period's state 
onditional on an a
tion in the support of mX. Therefore, we


an repla
e all these beliefs with a single belief that belongs to ∆(ΘQ(m)), so that


onditions (i) and (ii) in the de�nition of equilibrium are satis�ed for the spe
ial 
ase

of subje
tively stati
 SMDPs.

More generally, we 
an prove the same result by assuming identi�
ation. If the

SMDP is identi�ed, we 
an essentially think of ∆(ΘQ(m)) being a degenerate belief

on a spe
i�
 parameter value, whi
h in turn implies two properties: First, µs,x does

not depend on s, x; denote it by µ. Se
ond, sin
e the belief µ is degenerate, it will

forever remain �xed, and so (17) implies that x is optimal given s in the MDP(Q̄µ),

where the belief is �xed at µ. Thus, one again, 
onditions (i) and (ii) in the de�nition

of Berk-Nash equilibrium are satis�ed.

Finally, the reason why 
ondition (iii) in the de�nition of Berk-Nash equilibrium

holds 
an be des
ribed as follows. If the agent were using strategy mt to make de-


isions, then the probability distribution over states next period would be given by

Q[mt](·) ≡
∑

(s,x)∈S×X
Q(· | s, x)mt(s, x). Sin
e mt 
onverges to m and the operator

Q[·] is 
ontinuous, the asymptoti
 evolution of the state is given by the probabil-

ity distribution Q[m](·). Sin
e mt 
onverges, then it must 
onverge to a stationary

distribution of the Markov pro
ess over states de�ned by this operator.

In the remainder of this se
tion, we investigate the extent to whi
h we 
an extend

the previous arguments to 
ases where identi�
ation fails or the SMDP is not subje
-

tively stati
. We begin by noting that the de�nition of steady state used in Se
tion

5.1 (the 
onvergen
e of time averages) is di�erent from the de�nition used elsewhere.

In previous work (e.g., Fudenberg and Kreps [1993℄, Esponda and Pouzo [2016℄), it is


ommon to de�ne a steady state as a situation where the agent's intended behavior
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onverges. In Theorem 2, all we need is that the time average 
onverges, but, be
ause

of the dynami
 nature of the environment, we need the 
onvergen
e of the frequen
y

of state-a
tion pairs, not just of the a
tions. In parti
ular, this type of 
onvergen
e

does not guarantee that the agent's intended behavior 
onverges, but only that its fre-

quen
y does. We now show that if we strengthen the notion of steady state to require

that both intended behavior and time averages 
onverge, then a steady state 
orre-

sponds to a Berk-Nash equilibrium provided that all states are visited with positive

probability.

10

We de�ne a strategy σ : S → ∆(X) to be a mapping between states and probability

distribution over a
tions. Let Σ denote the set of all strategies. For a �xed poli
y

fun
tion f and for every t, let σt : H → Σ denote the (time-t intended) strategy of

the agent, de�ned by setting

σt(h) = f(· | ·, µt(h)) ∈ Σ.

Theorem 3. Let f be an optimal poli
y fun
tion. Suppose that (σt)t 
onverges and

that (mt)t 
onverges to m with Pf
-positive probability and that the SMDP is weakly

identi�ed given m. Suppose also that m(s) > 0 for all s ∈ S. Then m is a Berk-Nash

equilibrium of the SMDP.

Proof. See Appendix A.5.

The main idea behind the proof is as follows. We 
an always �nd a subsequen
e of

posteriors that 
onverges to some µ∗
and, by Lemma 2 and the fa
t that the agent's

intended strategy (σt)t 
onverges to some σ, it follows that σ must solve the dynami


optimization problem for beliefs 
onverging to µ∗ ∈ ∆(ΘQ(m)). A key di�eren
e

with the proof of Theorem 3 is that we 
an use the fa
t that the agent's intended

behavior 
onverges to 
on
lude that the same belief µ∗
justi�es all of the agent's

limiting a
tions. Next, it is not di�
ult to show that the limiting behavior of the

agent in state s must 
orrespond to the 
onditional distribution of the limiting time

average, i.e, σ(· | s) = m(· | s). Sin
e all states are visited with positive probability

a

ording to m, it follows that there exists a belief µ∗
su
h that for every (s, x) with

m(s, x) > 0, x is optimal in the dynami
 optimization problem with 
urrent belief

10

We are unable to show if this result is also true when intended behavior does not 
onverge.
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µ∗
. The �nal step is to show that this type of optimality implies optimality in the

dynami
 optimization problem where the belief is �xed at µ∗
.

For this �nal step, we rely on the assumption that all states are visited with

positive probability, and the argument is as follows. For ea
h s̃, let xs̃ denote an

a
tion that is played in the limit when the state is s̃, i.e., m(s̃, xs̃) > 0. Consider the

strategy where the agent plays xs̃ in ea
h state s̃. By weak identi�
ation, the belief

never 
hanges and the value of following this strategy does not depend on the spe
i�


belief in ∆(ΘQ(m)), sin
e, by weak identi�
ation, all parameter values in ΘQ(m) give

rise to the same distribution over next period's states. By the previous optimality

argument, we know that a
tion xs is optimal in state s given belief µ∗
. This means

that xs maximizes the sum of today's payo� and the 
ontinuation value, where the


ontinuation value is the value of playing xs̃ in ea
h state s̃ in the future. Consider

an alternative a
tion y. This alternative a
tion yields some payo� today and then a


ontinuation value where it is possible that the agent's belief 
hanges. This possibly

new belief, 
all it µ′
, must still have support in ΘQ(m), sin
e the original belief µ∗

has

support in ΘQ(m). Consider the 
ontinuation value of this a
tion y with a new belief

µ′
and a new state. The agent 
an still, from that moment on, follow the strategy of

playing xs̃ in ea
h state s̃ in the future. Thus, the 
ontinuation value from playing y

is at least the same or higher as the 
ontinuation value from xs. Therefore, the fa
t

that xs is optimal when the nonnegative value of information from playing a di�erent

a
tion y is taken into a

ount implies that xs must also be optimal when the belief is

�xed at µ∗
and there is no further value from learning.

The argument in the proof of Theorem 3 relies on the assumption that all states are

visited with positive probability. This assumption allows us to 
onstru
t a strategy

(to play xs̃ in ea
h state s̃) that provides a lower bound to the payo� that the agent


ould obtain from 
hoosing an a
tion that 
ould potentially lead to an updated belief.

We 
on
lude with an example illustrating that this assumption is important. In

parti
ular, the following example shows a 
ase where only one state is rea
hed in

steady state and, even though the agent's behavior and the time average 
onverge,

this steady state is not a Berk-Nash equilibrium.

example. There are 5 states, sI , s0, s1, sk, and sopt. In states s0 and s1, the agent

gets utility 0 and 1, respe
tively, and then returns to the initial state sI . In state sk,

the agent gets utility k and then returns to the initial state sI . In the initial state

sI , the agent has four possible a
tions, A, B, S, and O. Irrespe
tive of her a
tion, she
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gets utility 2/3 in state sI . If she 
hooses A, she goes to state s0 with probability θ

and s1 with 1− θ, while if she 
hooses B, she goes to s0 with probability 1− θ and s1

with probability θ. If she 
hooses S, she remains in state sI . In other words, A and

B are risky alternatives that yield utility 0 or 1 tomorrow, and S is a safe a
tion that

yields 2/3 tomorrow. Moreover, the agent eventually returns to sI . Formally, the

payo�s are π(sI , x) = 2/3 and π(sj, x) = j for all x, and the transitions are Qθ(s0 |

sI , A) = Qθ(s1 | sI , B) = θ, Qθ(s1 | sI , A) = Qθ(s0 | sI , B) = Qθ(s0 | sI , O) = 1 − θ,

and Qθ(s
I | sj, x) = 1 for all j ∈ {0, 1, k} and all x.

The agent 
an also take a
tion O in state sI , whi
h potentially generates the

option to make a risky but more pro�table investment yielding k in the future. Taking

a
tion O in state sI leads the agent to state sopt with probability θ and state s0 with

probability 1 − θ. In state sopt, the agent gets a utility 
ost (loses) 1/3 irrespe
tive

of her a
tion. If she 
hooses to make a risky investment (R, whi
h we 
an asso
iate

with a
tions A, B, and O in order to have the same set of a
tions for all states),

with probability 1 − θ she goes to state sk, and therefore gets utility k, and with

probability θ she goes to state s0, and therefore gets utility zero. If she 
hooses the

safe option (S), then she goes to state sI next period. In any 
ase, she always ends

up returning to state sI . Formally, the payo�s are π(sopt, x) = −1/3 for all x and the

transitions are Qθ(s
opt | sI , O) = Qθ(s0 | sopt, R) = θ, Qθ(sk | sopt, R) = 1 − θ, and

Qθ(s
I | sopt, S) = 1. Figure 2 depi
ts all the states, a
tions, and transitions for this

example.

Suppose that the agent knows all the primitives ex
ept the value of θ. Moreover,

suppose that the true value of θ is either 0 or 1, and that the SMDP is 
orre
tly

spe
i�ed, i.e., Θ = {0, 1}, thus highlighting that the new issue present in dynami


environments is not due to misspe
i�
ation. We will also assume that the agent

is patient, but not too patient, δ ∈ (0,
√

1/3), and that the return from the risky

investment in state sopt is high enough relative to the rate of impatien
e, k > 2+4/δ.

This problem is simple enough that we 
an dire
tly 
hara
terize the steady state

and then 
he
k if it is a Berk-Nash equilibrium. Consider a (Bayesian) agent who

starts with a prior µ = Pr(θ = 1) ∈ (0, 1) in state sI . If she 
hooses a
tion O, then,

beginning next period (re
all that all a
tions yield the same 
urrent payo� of 2/3 in

state sI), she will get

µW (sopt, 1) + (1− µ)W (s0, 0). (20)

Cru
ially, if a
tion O takes her to state sopt, then she learns that θ = 1, so that
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Figure 2: Example: Steady state is not a Berk-Nash equilibrium.

States are depi
ted with 
ir
les and a
tions with squares. For ea
h state, blue lines indi
ate the

a
tions that 
an be taken in the state. Bla
k arrows indi
ate transition probabilities given ea
h

state-a
tion pair.

µ′ = 1. In this 
ase, it is optimal to take the safe a
tion and return to sI next

period, sin
e taking the risky a
tion would lead to a zero payo� with probability one

and a delay in getting ba
k to sI of one period. Therefore, W (sopt, 1) = −1/3 +

δW (sI , 1). Also, if she ends up in state s0, she gets 0 and then goes on to state

sI , i.e., W (s0, 0) = 0 + δW (sI , 0). Moreover, if the agent is in state sI and has


ertainty about the state, i.e., µ′ = 0 or 1, then it is optimal for her to 
hoose either

a
tion A or B, respe
tively, and her payo� alternates between 2/3 and 1 forever, i.e.,

W (sI , 1) = W (sI , 0) =: W ∗ = (2/3+ δ)/(1− δ2). Therefore, expression (20) be
omes

− (1/3)µ+ δW ∗. (21)

Consider instead the 
ase where the agent 
hooses a
tion A in state sI . Then next

period she gets

(1− µ)W (s1, 0) + µW (s0, 1), (22)

where W (s1, 0) = 1 + δW (sI , 0) = 1 + δW ∗
and W (s0, 1) = 0 + δW (sI , 1) = δW ∗

.
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Thus, expression (22) be
omes

(1− µ) + δW ∗. (23)

Similarly, if the agent 
hooses a
tion B then next period she will get

µ+ δW ∗. (24)

Finally, 
hoosing a
tion S in state sI keeps the agent in state sI and results in no

information about θ being revealed. If S is optimal at sI , then it is optimal to 
hoose

it in every period, in whi
h 
ase the agent earns a payo� of 2/3 in ea
h period and

her dis
ounted payo� beginning next period is

2/3

1− δ
. (25)

Comparing (21) and (23), it follows that a
tion A is better than a
tion O for any

belief µ, implying that the agent will never pi
k O in state sI . Intuitively, the agent

realizes that, if she pi
ks O and ends up in state sopt, then she will infer that the risky

alternative will deliver a zero payo� for sure, and so there is no point in pi
king O

to begin with. Also, by 
omparing (23), (24), and (25), it follows that if the agent

starts in state sI with a prior µ that satis�es

1/3

1− δ2
≤ µ ≤

2/3− δ2

1− δ2
,

then it is optimal for her to 
hoose S and stay at sI forever. (Su
h a set of priors is

nonempty be
ause δ ∈ (0,
√

1/3)). Therefore, repeatedly 
hoosing S and staying at

sI is a steady-state out
ome. Note, however, that Theorem 2 does not apply to this

steady state be
ause (i) the SMDP is not subje
tively stati
, and (ii) identi�
ation

does not hold, be
ause the agent learns nothing about θ by playing S at sI . Theorem 3

also does not apply here, be
ause in this steady-state out
ome only state sI is visited.

In fa
t, we will now show that this steady-state out
ome 
annot arise in a Berk-Nash

equilibrium, suggesting a limitation of equilibrium analysis in dynami
 settings.

To analyze Berk-Nash equilibria, let µ denote the agent's equilibrium belief and


onsider the agent's 
hoi
e in state sI . Let's �rst �nd the set of µ's su
h that a
tion

S is preferred to both A and B, ignoring a
tion O. If the agent takes a
tion S, then,
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beginning next period (re
all that all a
tions yield the same 
urrent payo�), she goes

ba
k to sI and obtains

W (sI , µ). (26)

A
tion A, on the other hand, yields

µW (s0, µ) + (1− µ)W (s1, µ), (27)

where, importantly, the agent does not update her equilibrium belief upon moving to

state s0 or s1, as the de�nition of equilibrium requires optimization with respe
t to

a single, �xed equilibrium belief. As before, we have W (s0, µ) = 0 + δW (sI , µ) and

W (s1, µ) = 1 + δW (sI , µ). Therefore, expression (27) be
omes

(1− µ) + δW (sI , µ). (28)

Similarly, a
tion B yields

µ+ δW (sI , µ). (29)

Finally, note that if S is optimal, then the agent stays always in sI and earns 2/3 in

every period; therefore, W (sI , µ) = (2/3)/(1 − δ). It then follows from (27), (28),

and (29) that S 
an be optimal only if 1/3 ≤ µ ≤ 2/3. We will show, however, that

under any su
h µ, the agent prefers a
tion O to a
tion S. Therefore, S 
annot arise

as a Berk-Nash equilibrium out
ome. To establish this 
laim, let's assume that S is

optimal. A deviation to a
tion O would yield

µW (sopt, µ) + (1− µ)W (s0, µ), (30)

where W (sopt, µ) = −1/3 + δ(µW (s0, µ) + (1− µ)W (sk, µ)). Note that we have used

the fa
t that, in deviating to O, the agent would pi
k the risky alternative in state

sopt; otherwise, it 
ould never be optimal to 
hoose O. By also using the fa
t that

W (sj, µ) = j + δW (sI , µ), for j ∈ {0, k}, expression (30) be
omes

− (1/3)µ+ δµ(1− µ)k + (µδ + (1− µ))δW (sI , µ). (31)

Using the fa
t that W (sI , µ) = (2/3)/(1−δ) if S is optimal, we 
an 
ompare W (sI , µ)

with (31) and use algebra to 
on
lude that it is stri
tly lower (hen
e, the agent prefers
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to deviate from S to O) for all values of µ between 1/3 and 2/3 given the assumption

that k > 2 + 4/δ.11 �

5.2 Dis
ussion

We 
on
lude with additional remarks about the above results.

Guidan
e for using equilibrium 
on
ept : Theorems 2 and 3 suggest that the equi-

librium approa
h is valid in SMDPs that are not subje
tively stati
 provided that

either identi�
ation holds or that all states are visited with positive probability (the

latter is the 
ase, for example, if every state 
an be rea
hed from any other state ir-

respe
tive of the agent's a
tions). Alternatively, if either of these 
onditions fails, the

modeler 
an add small perturbations that either guarantee that identi�
ation holds

(as we did, for example, in Se
tion 4.1) or small perturbations that guarantee that

all states 
an be rea
hed with positive probability. Of 
ourse, there are environments

where these perturbations are not justi�able, su
h as in bandit problems where the

only way to learn about the 
onsequen
e of an a
tion is to take that a
tion. To

the extent to whi
h those environments are not subje
tively stati
, then our results

suggest that the equilibrium approa
h is of limited use in those 
ases.

Convergen
e: Theorems 2 and 3 do not imply that behavior will ne
essarily sta-

bilize in an SMDP. In fa
t, it is well known from the theory of Markov 
hains that,

even if no de
isions a�e
t the relevant transitions, out
omes need not stabilize with-

out further assumptions�this is also true, for example, in the related 
ontext of

learning to play Nash equilibrium in games.

12

Thus, the question of 
onvergen
e

remains open at this level of generality. Re
ently there has been progress ta
kling


onvergen
e, but all in the 
ontext of stati
 environments where the only relevant

state variable is the agent's belief (Fudenberg, Romanyuk, and Stra
k [2017℄, Heid-

hues, K®szegi and Stra
k (2018a, 2018b)), Esponda, Pouzo, and Yamamoto [2019℄,

Fri
k, Iijima, and Ishii [2020℄, and Fudenberg, Lanzani, and Stra
k [2020℄).

11W (sI , µ) is less than expression (31) whenever 2/3 + µ((2/3)δ + 1/3) − δµ(1 − µ)k < 0. For

1/3 ≤ µ ≤ 2/3, the LHS of this last expression is largest when µ = 2/3, and repla
ing this value in

the expression we obtain k > 2 + 4/δ.
12

For example, in the game-theory literature, general global 
onvergen
e results have only

been obtained in spe
ial 
lasses of games�e.g. zero-sum, potential, and supermodular games

(Hofbauer and Sandholm, 2002).
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Mixed strategies: Theorem 3 also suggests that we 
an interpret a mixed strategy

as the limit of the frequen
y of a
tions. In parti
ular, even if the agent's a
tion may

not settle down, the frequen
y of a
tions may; see Esponda, Pouzo, and Yamamoto

[2019℄ for a formalization of this idea. Alternatively, we 
an interpret a mixed strat-

egy following the approa
h of Fudenberg and Kreps [1993℄, who show that adding

small payo� perturbations a la Harsanyi [1973℄ 
an provide a learning foundation for

mixed-strategy Nash equilibria: Agents do not a
tually mix; instead, every period

their payo�s are subje
t to small perturbations, and what we 
all the mixed strat-

egy is simply the probability distribution generated by playing pure strategies and

integrating over the payo� perturbations. We also followed this approa
h in the pa-

per that introdu
ed Berk-Nash equilibrium in stati
 
ontexts (Esponda and Pouzo,

2016). The same idea applies here at the expense of additional notational burden.

13
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A Appendix

A.1 Proof of Lemma 1

The proof of Lemma 1 relies on the following 
laim.

Claim A. (i) For any regular SMDP, there exists θ∗ ∈ Θ and K < ∞ su
h

that, for all m ∈ ∆(S × X), KQ(m, θ∗) ≤ K. (ii) Fix any θ ∈ Θ and a sequen
e

(mn)n in ∆(S× X) su
h that Qθ(s
′ | s, x) > 0 for all (s′, s, x) ∈ S× S× X su
h that

Q(s′ | s, x) > 0 and limn→∞mn = m. Then limn→∞KQ(mn, θ) = KQ(m, θ). (iii) KQ

is (jointly) lower semi
ontinuous: Fix any (mn)n and (θn)n su
h that limn→∞mn =

m and limn→∞ θn = θ. Then lim infn→∞KQ(mn, θn) ≥ KQ(m, θ). (iv) For all

m ∈ ∆(S×X), θ 7→ KQ(m, θ) is 
ontinuous at every θ ∈ Θ su
h that KQ(m, θ) < ∞.

Proof of Claim A. The proof is very similar to the proof of Claim A in Esponda and Pouzo

[2016℄, so we only present a sket
h. Part (i) follows from the third 
ondition in the

de�nition of regular SMDP. Part (ii) follows standard 
ontinuity arguments. For

part (iii), observe that KQ(mn, θn) =
∑

s,xEQ(·|s,x)

[

log Q(S′|s,x)
Qθn (S

′|s,x)

]

mn(s, x). It follows

that

∑

s,xEQ(·|s,x) [logQ(S ′|s, x)]mn(s, x) →
∑

s,xEQ(·|s,x) [logQ(S ′|s, x)]m(s, x), so

it remains to study lim infn→∞−
∑

s,xEQ(·|s,x) [logQθn(S
′|s, x)]mn(s, x). Suppose the

liminf is �nite (if not, the result holds trivially). As θ 7→ Qθ is 
ontinuous, then if

m(s, x) > 0 it follows thatEQ(·|s,x) [logQθn(S
′|s, x)]mn(s, x) → EQ(·|s,x) [logQθ(S

′|s, x)]m(s, x).

Ifm(s, x) = 0, it follows thatEQ(·|s,x) [logQθn(S
′|s, x)]mn(s, x) → 0 ≥−EQ(·|s,x) [logQθ(S

′|s, x)]m(s, x)

(by 
onvention 0 log 0 = 0). Thus the desired result holds.

Part (iv): Sin
e

∑

s,xEQ(·|s,x)

[

log Q(S′|s,x)
Qθ(S′|s,x)

]

m(s, x) < ∞, 
ontinuity follows from


ontinuity of θ 7→ log Q(s′|s,x)
Qθ(s′|s,x)

Q(s′|s, x)m(s, x) and the fa
t that S× X is �nite. �

Proof of Lemma 1. (i) By Jensen's inequality and stri
t 
on
avity of ln(·),

KQ(m, θ) ≥ −
∑

(s,x)∈S×X
ln(EQ(·|s,x)[

Qθ(S
′|s,x)

Q(S′|s,x)
])m(s, x) = 0, with equality if and only

if Qθ(· | s, x) = Qθ(· | s, x) for all (s, x) su
h that m(s, x) > 0.

(ii) ΘQ(m) is nonempty : By Claim A(i), there exists K < ∞ su
h that the

minimizers are in the 
onstraint set {θ ∈ Θ : KQ(m, θ) ≤ K}. Be
ause KQ(m, ·) is


ontinuous over a 
ompa
t set, a minimum exists.

ΘQ(·) is uh
 and 
ompa
t valued: Fix any (mn)n and (θn)n su
h that limn→∞mn =

m, limn→∞ θn = θ, and θn ∈ ΘQ(mn) for all n. We establish that θ ∈ ΘQ(m) (so

that ΘQ(·) has a 
losed graph and, by 
ompa
tness of Θ, it is uh
). Suppose, in

order to obtain a 
ontradi
tion, that θ /∈ ΘQ(m). Then, by Claim A(i), there exists
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θ̂ ∈ Θ and ε > 0 su
h that KQ(m, θ̂) ≤ KQ(m, θ) − 3ε and KQ(m, θ̂) < ∞. By

regularity, there exists (θ̂j)j with limj→∞ θ̂j = θ̂ and, for all j, Qθ̂j
(s′ | s, x) > 0 for

all (s′, s, x) ∈ S2 ×X su
h that Q(s′ | s, x) > 0. We will show that there is an integer

J su
h that θ̂J �does better� than θn given mn, whi
h is a 
ontradi
tion. Be
ause

KQ(m, θ̂) < ∞, 
ontinuity of KQ(m, ·) implies that there exists J large enough su
h

that

∣

∣

∣
KQ(m, θ̂J )−KQ(m, θ̂)

∣

∣

∣
≤ ε/2. Moreover, Claim A(ii) applied to θ = θ̂J implies

that there exists Nε,J su
h that, for all n ≥ Nε,J ,

∣

∣

∣
KQ(mn, θ̂J)−KQ(m, θ̂J)

∣

∣

∣
≤ ε/2.

Thus, for all n ≥ Nε,J ,

∣

∣KQ(mn, θ̂J) − KQ(m, θ̂)
∣

∣ ≤
∣

∣KQ(mn, θ̂J) − KQ(m, θ̂J)
∣

∣ +
∣

∣KQ(m, θ̂J)−KQ(m, θ̂)
∣

∣ ≤ ε and, therefore,

KQ(mn, θ̂J) ≤ KQ(m, θ̂) + ε ≤ KQ(m, θ)− 2ε. (32)

Suppose KQ(m, θ) < ∞. By Claim A(iii), there exists nε ≥ Nε,J su
h that

KQ(mnε
, θnε

) ≥ KQ(m, θ)−ε. This result, together with (32), implies thatKQ(mnε
, θ̂J) ≤

KQ(mnε
, θnε

) − ε. But this 
ontradi
ts θnε
∈ ΘQ(mnε

). Finally, if KQ(m, θ) = ∞,

Claim A(iii) implies that there exists nε ≥ Nε,J su
h that KQ(mnε
, θnε

) ≥ 2K, where

K is the bound de�ned in Claim A(i). But this also 
ontradi
ts θnε
∈ ΘQ(mnε

).

Thus, ΘQ(·) has a 
losed graph, and so ΘQ(m) is a 
losed set. Compa
tness of

ΘQ(m) follows from 
ompa
tness of Θ. Therefore, ΘQ(·) is upper hemi
ontinuous

(see Aliprantis and Border [2006℄, Theorem 17.11). �

A.2 Proof of Theorem 1

Let W = ∆(S × X) × ∆(Θ) and endow it with the produ
t topology (given by the

Eu
lidean one for∆(S×X) and the weak topology for∆(Θ)). Clearly,W 6= {∅}. Sin
e

Θ is 
ompa
t, ∆(Θ) is 
ompa
t under the weak topology; Σ and ∆(S × X) are also


ompa
t. Thus, W is 
ompa
t under the produ
t topology. W is also 
onvex. Finally,

W ⊆ M× rca(Θ) where M is the spa
e of |S| × |X| real-valued matri
es and rca(Θ)

is the spa
e of regular Borel signed measures endowed with the weak topology. The

spa
e M× rca(Θ) is lo
ally 
onvex with a family of seminorms {(m,µ) 7→ pf(m,µ) =

||m||+ |
�

Ω
f(x)µ(dx)| : f ∈ C(Ω)} (C(Ω) is the spa
e of real-valued 
ontinuous and

bounded fun
tions and ||.|| is understood as the spe
tral norm). Also, we observe

that (m,µ) = 0 i� pf(m,µ) = 0 for all f ∈ C(Ω), thus M× rca(Θ) is also Hausdor�.
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Let T : W → 2W be su
h that T (m,µ) = M(m,µ)×∆(ΘQ(m)) where

(m,µ) 7→ M(m,µ) ≡ {m′ ∈ ∆(S× X) : m′ ∈ O(µ) and m′
S = Q[m]}

where for any µ ∈ ∆(Θ), O(µ) is the set of all m′ ∈ ∆(S×X) that satisfy optimality,

i.e., for all (s, x) ∈ S×X su
h that m(s, x) > 0, x is optimal given s in the MDP(Q̄µ),

where Q̄µ =
�

Θ
Qθµ(dθ); and m 7→ Q[m](·) =

∑

(s,x)∈S×X
Q(· | s, x)m(s, x) ∈ ∆(S).

Hen
e, to show existen
e of an equilibrium, it is su�
ient to show that T has a

�xed point. Sin
e W is a nonempty 
ompa
t 
onvex subset of a lo
ally Hausdor�

spa
e, there exists a �xed point of T by the Kakutani-Fan-Gli
ksberg theorem (see

Aliprantis and Border [2006℄, Corollary 17.55), if T is nonempty, 
onvex valued, 
om-

pa
t valued, and upper hemi
ontinuous under the produ
t topology (and hen
e, it

has a 
losed graph (see Aliprantis and Border [2006℄, Theorem 17.11)).

Non-empty: We show that, for every (m,µ) ∈ W, M(m,µ) and ΘQ(m) are

non-empty, and thus, so is T (m,µ). Nonemptiness of ΘQ(m) follows from Lemma 1.

For nonemptiness of M(m,µ), note that, for ea
h s, the argmax of the MDP(Q̄µ) is

non-empty; in parti
ular, there exists m′
X|S su
h that, for ea
h s, any a
tion in the

support of m′
X|S(· | s) is optimal. Then m′ = m′

X|SQ[m] ∈ ∆(S × X) is an element of

M(m,µ).

Convex-valued: It su�
es to show that both for every (m,µ) ∈ W, ∆(ΘQ(m))

and M(m,µ) are 
onvex. Convexity of the former is obvious. To show 
onvexity

of M(m,µ) take any m1 and m2 in M(m,µ). For any λ ∈ [0, 1] it is 
lear that

λmS,1+(1−λ)mS,2 = Q[m]. Also, any (s, x) in the support of λm1+(1−λ)m2 has to

be in the support of either m1 or m2 and thus, x is optimal given s in the MDP(Q̄µ).

Therefore λm1 + (1− λ)m2 ∈ M(m,µ).

Compa
t-valued: For every (m,µ) ∈ W, ∆(ΘQ(m)) is 
ompa
t (under the weak

topology) be
ause ΘQ(m) is 
ompa
t (see Aliprantis and Border [2006℄, Theorem

15.11). The set ∆(S× X) is 
ompa
t, so to show 
ompa
tness of M(m,µ) it su�
es

to show it is 
losed. Take any 
onvergent (to some m′
) sequen
e (m′

n)n in M(m,µ).

It is 
lear that m′ = Q[m]. Take any (s, x) in the support of m′
, it follows that for

su�
iently large n, (s, x) are in the support of m′
n and so, x is optimal given s in the

MDP(Q̄µ). Thus, T is 
ompa
t-valued under the produ
t topology.

UHC: By Aliprantis and Border [2006℄, Theorem 17.28 to show upper hemi
onti-

nuity of T under the produ
t topology it su�
es to show that both m 7→ ∆(ΘQ(m))

40



and M are uh
. The 
orresponden
e ΘQ(·) is upper hemi
ontinuous; hen
e, the 
or-

responden
e ∆(ΘQ(·)) is too (see Aliprantis and Border [2006℄, Theorem 17.13). To

show upper hemi
ontinuity of M, take a sequen
e (m′
n, mn, µn)n in Graph(M) that


onverges to (m′, m, µ). It is 
lear that m′
S
= Q[m] so we only need to show that O

is u
h.

Claim: O is uh
.

Proof: Take any sequen
e (m′
n, µn)n in Graph(O) that 
onverges to (m′, µ). Take

any (s, x) in the support of m′
. Then, for su�
iently large n, (s, x) are in the support

of m′
n and, therefore, x is optimal given s in the MDP(Q̄µn

). By standard arguments

(s,Q) 7→ M(s,Q) ≡ argmaxx̂∈X
�

S
{π(s, x̂, s′) + δV (s′)}Q(ds′|s, x̂) is uh
 (sin
e S×X

are �nite, Q belongs to the spa
e of real-valued matri
es with its natural topology).

Sin
e θ 7→ Qθ is bounded and 
ontinuous, µ 7→ Q̄µ is 
ontinuous under the weak

topology. Thus (s, µ) 7→ M(s, Q̄µ) is uh
. Sin
e x ∈ M(s, Q̄µn
) for all n, it follows

that x ∈ M(s, Q̄µ); therefore, x is optimal given s in the MDP(Q̄µ), as desired. �

A.3 Proof of Lemma 2

For the proof of Lemma 2, we rely on the following de�nitions and the 
laim below.

De�ne K∗
Q(m) ≡ infθ∈Θ KQ(m, θ) and let Θ̂ ⊆ Θ be a dense set su
h that, for all

θ ∈ Θ̂, Qθ(s
′ | s, x) > 0 for all (s, x, s′) ∈ S × X × S su
h that Q(s′ | s, x) > 0.

Existen
e of su
h a set Θ̂ follows from the regularity assumption.

Claim B. Suppose limt→∞ ‖mt −m‖ = 0 a.s.-Pf
. Then: (i) For all θ ∈ Θ̂,

lim
t→∞

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
=

∑

(s,x)∈S×X

EQ(·|s,x)

[

log
Q(S ′|s, x)

Qθ(S ′|s, x)

]

m(s, x)

a.s.-Pf
. (ii)ForPf

-almost all h ∈ H and for any ǫ > 0 and α = (infΘ: dm(θ)≥ǫ KQ(m, θ)−

K∗
Q(m))/3, there exists T su
h that, for all t ≥ T ,

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ K∗

Q(m) +
3

2
α

for all θ ∈ {Θ: dm(θ) ≥ ǫ}, where dm(θ) = inf θ̃∈ΘQ(m) ||θ − θ̃||.

Proof of Claim B. (The proof is similar to the proof of Claim B in Esponda and Pouzo

[2016℄) We �rst show that for Pf
-almost all histories and any ǫ > 0, there exists a
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Mǫsu
h that

∣

∣

∣

∣

∣

∣

t−1

t
∑

τ=1

logQ(sτ |sτ−1, xτ−1) =
∑

(s,x)∈S×X

EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x)

∣

∣

∣

∣

∣

∣

< ǫ

for all t ≥ Mǫ. To do this, for any τ ∈ {1, 2, ...} let lτ ≡ logQ(sτ |sτ−1, xτ−1) −

EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
]

. Observe that for all z ∈ S2×X, EPf (·|ht) [lt+1] = 0

a.s.-Pf
, where Pf(·|ht) denotes the 
onditional probability indu
ed by Pf

given the

partial history ht
. Moreover, suptEPf [l2t ] ≤ supt

∑t
τ=1 τ

−2E
[
∑

s′∈S(logQ(s′|S,X))2Q(s′ | S,X)
]

<

∞ be
ause x 7→ (log x)2x is bounded and

∑

τ τ
−2 < ∞. Thus, an appli
ation of the

MCT and Krone
ker's lemma imply that

lim
t→∞

t−1
t

∑

τ=1

(

logQ(sτ |sτ−1, xτ−1)− EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
])

= 0

a.s.-Pf
. Therefore, to establish the desired result it su�
es to show that

lim
t→∞

t−1

t
∑

τ=1

EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
]

−
∑

(s,x)∈S×X

EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x) = 0

(33)

a.s.-Pf
. Observe that

t−1
t

∑

τ=1

EQ(·|sτ−1,xτ−1)

[

logQ(S ′|sτ−1, xτ−1)
]

=
∑

s,x∈S×X

t−1
t

∑

τ=1

1(s,x)(sτ−1, xτ−1)EQ(·|s,x)

[

logQ(S ′|s, x)
]

=
∑

s,x∈S×X

mt(s, x)EQ(·|s,x)

[

logQ(S ′|s, x)
]

.

Equation (33) follows be
ause limt→∞ ‖mt −m‖ = 0 a.s.-Pf
andEQ(·|s,x)

[

logQ(S ′|s, x)
]

=
∑

s′∈S logQ(s′|s, x)Q(s′|s, x) is bounded for all (s, x) ∈ S×X. So, in order to establish

parts (i) and (ii) it only remains to 
ontrol the expression

− lim
t→∞

t−1

t
∑

τ=1

(

logQθ(sτ |sτ−1, xτ−1)− EQ(·|sτ−1,xτ−1)

[

logQθ(S
′|sτ−1, xτ−1)

])
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Part (i). Pointwise over Θ̂,

lim
t→∞

t−1

t
∑

τ=1

(

logQθ(sτ |sτ−1, xτ−1)− EQ(·|sτ−1,xτ−1)

[

logQθ(S
′|sτ−1, xτ−1)

])

= 0

a.s.-Pf
by essentially the same arguments used in the �rst part of the proof.

Part (ii). For any ξ > 0 let Θξ ⊆ Θ su
h that θ ∈ Θξ i� Qθ(s
′|s, x) ≥ ξ for all

(s′, s, x) su
h that Pm(s
′, s, x) > 0. Also, observe that

lim
t→∞

t−1
t

∑

τ=1

logQθ(sτ |sτ−1, xτ−1) =
∑

s′,s,x∈S2×X

freqt(s
′, s, x) logQθ(s

′|s, x)

where z 7→ freqt(z) ≡ t−1
∑t

τ=1 1z(sτ , sτ−1, xτ−1). Let (s′, s, x) 7→ Pm(s
′, s, x) ≡

Q(s′|s, x)m(s, x). By essentially the same argument used in the �rst part of the

proof, it follows that for any ζ > 0 and Pf
-almost any h, there exists a Tζ su
h that

maxz∈S2×X |freqt(z)− Pm(z)| < ζ for all t ≥ Tζ .

Hen
e, for any θ ∈ {Θ \Θξ} ∩ {Θ: dm(θ) ≥ ǫ}

∑

(s′,s,x)∈S2×X

freqt(s
′, s, x) logQθ(s

′|s, x) ≤
∑

(s′,s,x) : Pm(s′,s,x)>0

(Pm(s
′, s, x)− ζ) logQθ(s

′|s, x)

≤
∑

s,x∈S×X

EQ(·|s,x) [logQθ(s
′|s, x)]m(s, x)

− ζ
∑

(s′,s,x) : Pm(s′,s,x)>0

logQθ(s
′|s, x)

for all t ≥ Tζ. Therefore,

t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥KQ(m, θ) + ζ

∑

(s′,s,x) : Pm(s′,s,x)>0

logQθ(s
′|s, x)

for any t ≥ max{Tζ ,Mα}. By de�nition of {Θ: dm(θ) ≥ ǫ} it follows that

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥K∗

Q(m) + 2α + ζ
∑

(s′,s,x) : Pm(s′,s,x)>0

logQθ(s
′|s, x)

for any t ≥ Tζ . Sin
e θ ∈ {Θ \Θξ}∩{Θ: dm(θ) ≥ ǫ}, let zθ = (s′θ, sθ, xθ) be su
h that

Qθ(s
′
θ|sθ, xθ) < ξ and Pm(zθ) > 0 and note that ζ

∑

(s′,s,x) : Pm(s′,s,x)>0 logQθ(s
′|s, x) ≤

43



ζ log ξpL where pL ≡ min{Pm(z) : Pn(z) > 0}. This implies that there exists a ζ∗ su
h

that ζ∗ log ξpL ≤ −0.5α and so

t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥K∗

Q(m) +
3

2
α

for any t ≥ max{Tζ∗ ,Mα}.

For any θ ∈ Θξ∩{Θ: dm(θ) ≥ ǫ}, it follows that
∑

(s′,s,x)∈S2×X
freqt(s

′, s, x) logQθ(s
′|s, x) ≤

ln ξ,

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ − ln ξ +

∑

(s,x)∈S×X

EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x)− 1

for any t ≥ M1. Sin
e
∑

(s,x)∈S×X
EQ(·|s,x)

[

logQ(S ′|s, x)
]

m(s, x) is �nite we 
an 
hoose

ξ su
h that the RHS is larger or equal than K∗
Q(m) + 3

2
α.

We thus showed that for Pf
-almost all h ∈ H and for any ǫ > 0, there exists T

su
h that, for all t ≥ T ,

t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)
≥ K∗

Q(m) +
3

2
α

for all θ ∈ {Θ: dm(θ) ≥ ǫ}, as desired. �

Proof of Lemma 2. It su�
es to show that limt→∞

�

Θ
dm(θ)µt(dθ) = 0 a.s.-Pf

over H. For any η > 0 let Θη(m) = {θ ∈ Θ : dm(θ) < η}, and Θ̂η(m) = Θ̂ ∩ Θη(m)

(the set Θ̂ is de�ned in 
ondition 3 of De�nition 5, i.e., regularity). We now show

that µ0(Θ̂η(m)) > 0. By Lemma 1, ΘQ(m) is nonempty. By denseness of Θ̂, Θ̂η(m)

is nonempty. Nonemptiness and 
ontinuity of θ 7→ Qθ, imply that there exists a

non-empty open set U ⊆ Θ̂η(m). By full support, µ0(Θ̂η(m)) > 0. Also, observe

that for any ǫ > 0, {Θ: dm(θ) ≥ ǫ} is 
ompa
t. This follows from 
ompa
tness of

Θ and 
ontinuity of θ 7→ dm(θ) (whi
h follows by Lemma 1 and an appli
ation of

the Theorem of the Maximum). Compa
tness of {Θ: dm(θ) ≥ ǫ} and lower semi-


ontinuity of θ 7→ KQ(m, θ) (see Claim A(iii)) imply that infΘ: dm(θ)≥ǫ KQ(m, θ) =

minΘ: dm(θ)≥ǫ KQ(m, θ) > K∗
Q(m). Let α ≡ (minΘ: dm(θ)≥ǫ KQ(m, θ)−K∗

Q(m))/3 > 0.

Also, let η > 0 be 
hosen su
h that KQ(m, θ) ≤ K∗
Q(m) + 0.25α for all θ ∈ Θη(m)

(su
h η always exists by 
ontinuity of θ 7→ KQ(m, θ)).
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Let H1 be the subset of H for whi
h the statements in Claim B hold; note that

Pf (H \H1) = 0. Hen
eforth, �x h ∈ H1; we omit h from the notation to ease the

notational burden. By simple algebra and the fa
t that dm is bounded in Θ, it follows

that, for all ǫ > 0 and some �nite C > 0,

�

Θ

dm(θ)µt(dθ) =

�

Θ
dm(θ)Qθ(st | st−1, xt−1)µt−1(dθ)
�

Θ
Qθ(st | st−1, xt−1)µt−1(dθ)

=

�

Θ
dm(θ)Zt(θ)µ0(dθ)
�

Θ
Zt(θ)µ0(dθ)

≤ ǫ+ C

�

{Θ: dm(θ)≥ǫ}
Zt(θ)µ0(dθ)

�

Θ̂η(m)
Zt(θ)µ0(dθ)

≡ ǫ+ C
At(ǫ)

Bt(η)
.

where

Zt(θ) ≡
t

∏

τ=1

Qθ(sτ |sτ−1, xτ−1)

Q(sτ |sτ−1, xτ−1)
= exp

{

−
t

∑

τ=1

log

(

Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)

}

.

Hen
e, it su�
es to show that

lim sup
t→∞

{exp {t (K∗(m) + 0.5α)}At(ǫ)} = 0 (34)

and

lim inf
t→∞

{

exp
{

t
(

K∗
Q(m) + 0.5α

)}

Bt(η)
}

= ∞. (35)

Regarding equation (34), we �rst show that

lim
t→∞

sup
{Θ: dm(θ)≥ǫ}

{

(

K∗
Q(m) + 0.5α

)

− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

}

≤ const < 0.

To show this, note that, by Claim B(ii) there exists a T , su
h that for all t ≥ T ,

t−1
∑t

τ=1 log(Q(sτ |sτ−1, xτ−1)/Qθ(sτ |sτ−1, xτ−1)) ≥ K∗
Q(m)+3

2
α, for all θ ∈ {Θ: dm(θ) ≥

ǫ}. Thus,

lim
t→∞

sup
{Θ: dm(θ)≥ǫ}

{

K∗
Q(m) +

α

2
− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

}

≤ −α.
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Therefore,

lim sup
t→∞

{

exp
{

t
(

K∗
Q(m) + 0.5α

)}

At(ǫ)
}

≤ lim sup
t→∞

sup
{Θ: dm(θ)≥ǫ}

exp
{

t
(

(

K∗
Q(m) + 0.5α

)

− t−1
t

∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)}

= 0.

Regarding equation (35), by Fatou's lemma and some algebra it su�
es to show

that

lim inf
t→∞

exp
{

t
(

K∗
Q(m) + 0.5α

)}

Zt(θ) = ∞ > 0

(pointwise on θ ∈ Θ̂η(m)), or, equivalently,

lim inf
t→∞

(

K∗
Q(m) + 0.5α− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)

> 0.

By Claim B(i),

lim inf
t→∞

(

K∗
Q(m) + 0.5α− t−1

t
∑

τ=1

log
Q(sτ |sτ−1, xτ−1)

Qθ(sτ |sτ−1, xτ−1)

)

= K∗
Q(m) + 0.5α−KQ(m, θ)

(pointwise on θ ∈ Θ̂η(m)). By our 
hoi
e of η, the RHS is greater than 0.25α and our

desired result follows. �

A.4 Proof of Theorem 2.

Let H be the set of histories su
h that (mt)t 
onverges to m. By hypothesis, Pf(H) >

0. By Lemma 2, there exists a set H′
with Pf(H′) = Pf(H) > 0 su
h that every

history in H′
satis�es the result stated in Lemma 2. Throughout, we �x a history

h ∈ H′
. Hen
eforth, we omit the history from the notation.

Also, let (µ, s) 7→ M(s, µ) ≡ argmaxx∈X
�

S
{π(s, x, s′) + δW (s′, B(s, x, s′, µ))} Q̄µ(ds

′|s, x),

whi
h by standard arguments is uh
.

We will �rst establish 
onditions (i) and (ii) in the de�nition of Berk-Nash equi-

librium. Let (s, x) be su
h that m(s, x) > 0. Sin
e (mt)t 
onverges to m, (s, x) o

urs

in�nitely often along the history, so we 
an �nd a subsequen
e along whi
h (s, x)
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o

urs along the entire subsequen
e: (st(j), xt(j)) = (s, x) for all j. By 
ompa
tness of

∆(Θ), we 
an take a further subsequen
e su
h that µs,x = limk→∞ µt(j(k)) exists. By

our 
hoi
e of history (see beginning of proof) and Lemma 2, µs,x ∈ ∆(ΘQ(m)). Also,

sin
e x ∈ M(s, µt(j(k))) for all k and limk→∞ µt(j(k)) = µs,x, uh
 of M(s, ·) implies that

x ∈ M(s, µs,x). Thus, we have shown that, for any (s, x) su
h that m(s, x) > 0, there

exists µs,x ∈ ∆(ΘQ(m)) su
h that

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µs,x))} Q̄µs,x
(ds′|s, x̂). (36)

We will now 
onsider ea
h 
ase in Theorem 2 separately. Consider �rst the 
ase

where identi�
ation holds. Identi�
ation implies that there exists Q∗
m su
h that, for

all µ ∈ ∆(ΘQ(m)), Q̄µ = Q∗
m. Note also that the posterior given µ ∈ ∆(ΘQ(m))

must also be in ∆(ΘQ(m)), and so expression (36) implies that x is optimal in the

MDP(Q∗
m). Thus, pi
king any µ ∈ ∆(ΘQ(m)), we have shown that, for all (s, x) in

the support of m(s, x), 
ondition (i) is satis�ed. Be
ause µ ∈ ∆(ΘQ(m)), 
ondition

(ii) is also satis�ed.

Consider next the 
ase where the SMDP is subje
tively stati
. In this 
ase, the

payo� fun
tion, the value fun
tion, the Bayesian operator, and the subje
tive transi-

tion probability fun
tion do not depend on s, and so, in a slight abuse of notation,

we drop s from subsequent expressions. For any x′ ∈ X,

�

S

{π(x, s′) + δW (B(x, s′, µs,x))} Q̄µs,x
(ds′|x) =

�

S

π(x, s′)Q̄µs,x
(ds′|x) + δW (µs,x)

≥

�

S

{π(x′, s′) + δW (B(x′, s′, µs,x))} Q̄µs,x
(ds′|x′)

≥

�

S

π(x′, s′)Q̄µs,x
(ds′|x′) + δW (µs,x),

where the �rst line follows from weak identi�
ation (sin
e (s, x) is in the support

of m, weak identi�
ation implies B(x, s′, µs,x) = µs,x for all s′ in the support of

Q̄µs,x
(ds′|x)), the se
ond line follows from (36), and the third line follows from the 
on-

vexity of the value fun
tion µ 7→ W (µ) (whi
h we prove at the end of this proof) and

the martingale property of Bayesian updating (whi
h imply, using Jensen's inequal-

ity,

�

S
W (B(x′, s′, µs,x)Q̄µs,x

(ds′|x′) ≥ W (
�

S
B(x′, s′, µs,x)Q̄µs,x

(ds′|x′)) = W (µs,x).)
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Therefore,

x ∈ argmax
x̂∈X

�

S

π(x̂, s′)Q̄µs,x
(ds′|x̂). (37)

Thus, for the subje
tively stati
 SMDP, we have shown that, for any (s, x) in the

support of m, there exists a belief µs,x ∈ ∆(ΘQ(m)) su
h that (37) is satis�ed (whi
h,

for this spe
ial 
ase, means that x is optimal given s in the MDP(Q̄µs,x
)).

It remains to establish that we 
an pi
k µs,x to be the same for all (s, x) in the

support of m. We will use the assumption of weak identi�
ation to establish this


laim. Let (s∗, x∗) be any other element in the support of m. By repeating the

argument above, there exists µs∗,x∗ ∈ ∆(ΘQ(m)) su
h that

x∗ ∈ argmax
x̂∈X

�

S

π(x̂, s′)Q̄µs∗,x∗
(ds′|x̂). (38)

By weak identi�
ation and the fa
t that both µs,x and µs∗,x∗
belong to ∆(ΘQ(m)),

then Q̄µs∗,x∗
(·|s̃, x̃) = Q̄µs,x

(·|s̃, x̃) for all (s̃, x̃) in the support of m. Therefore, for any

x′ ∈ X,

�

S

π(x∗, s′)Q̄µs,x
(ds′|x∗) =

�

S

π(x∗, s′)Q̄µs∗,x∗
(ds′|x∗)

≥

�

S

π(x, s′)Q̄µs∗,x∗
(ds′|x)

=

�

S

π(x, s′)Q̄µs,x
(ds′|x)

≥

�

S

π(x′, s′)Q̄µs,x
(ds′|x′),

where the two equalities follow from the impli
ation of weak identi�
ation mentioned

above and the two inequalities follow from (38) and (37), respe
tively. Thus, we 
an

use the same belief µs,x to support any state-a
tion pair (s∗, x∗) in the support of m.

We 
on
lude by showing 
ondition (iii) in the de�nition of Berk-Nash equilibrium.

Let m 7→ Q[m](s′) ≡
∑

(s,x)∈S×X
Q(s′ | s, x)m(s, x) for any s′ ∈ S. We want to show

that mS = Q[m]. By the triangle inequality,

||mS−Q[m]|| ≤ ||mS(·)−
∑

x∈X

mt+1(·, x)||+||
∑

x∈X

mt+1(·, x)−Q[mt]||+||Q[mt]−Q[m]||.

As (mt)t 
onverges to m, the �rst and the third terms in the RHS vanish. We now
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show that the se
ond term also vanishes and thus 
on
lude the veri�
ation of 
ondition

(iii). Observe that for any s′ ∈ S,

∑

x∈X

mt+1(s
′, x)−Q[mt](s

′) = (t + 1)−1
t+1
∑

τ=1

1s′(sτ )− t−1
t

∑

τ=1

Q(s′ | sτ , xτ )

= t−1

t
∑

τ=1

{1s′(sτ+1)−Q(s′ | st, xt)}+
1s′(s1) + t−1

∑t
τ 1s′(sτ+1)

t+ 1
.

The se
ond summand of the RHS vanishes as t → ∞. Regarding the �rst one, ob-

serve that for any t ∈ N EPf [1s(st+1) | h
t] = Q(s′ | st, xt), where EPf [· | ht] is the 
on-

ditional expe
tation under Pf
given history ht

. Let ζt ≡
∑t

τ=1 τ
−1{1s′(sτ+1)−Q(s′ |

st, xt)} and note that suptEPf [ζ2t ] ≤ 2 supt

∑t
τ=1 τ

−2 < ∞. Thus, by the Mar-

tingale 
onvergen
e theorem , the pro
ess (ζt)
∞
t=1 
onverges Pf

-a.s. to ζ . Kro-

ne
ker's Lemma implies that limt→∞ t−1
∑t

τ=1{1s′(sτ+1) − Q(s′ | st, xt)} = 0 Pf
-

a.s. Without loss of generality, we assume the history h satis�es this limit and thus

limt→∞ ||
∑

x∈Xmt+1(·, x)−Q[mt]|| = 0.

Proof that µ 7→ W (µ) is 
onvex: The value fun
tion is unique so it su�
es to

show that the Bellman operator maps 
onvex fun
tions into themselves. To do this,

let µ1 and µ2 be in ∆(Θ), for any λ ∈ (0, 1), µλ ≡ λµ1 + (1− λ)µ2 and µ 7→ G(µ) be


onvex. De�ne

B[G](µλ) ≡ max
x∈X

�

{π(x, s′) + δG(B(x, s′, µλ))}Q̄µλ
(ds′ | x).

Note that

(x, s′) 7→ B(x, s′, µλ) = λ

�

Qθ(s
′ | x)µ1(dθ)

�

Qθ(s′ | x)µλ(dθ)
B(x, s′, µ1)+(1−λ)

�

Qθ(s
′ | x)µ2(dθ)

�

Qθ(s′ | x)µλ(dθ)
B(x, s′, µ2).

By 
onvexity of G,

�

G(B(x, s′, µλ))Q̄µλ
(ds′ | x) ≤ λ

�

G(B(x, s′, µ1))Q̄µ1
(ds′ | x)+(1−λ)

�

G(B(x, s′, µ2))Q̄µ2
(ds′ | x).
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Therefore

B[G](µλ) ≤max
x∈X

λ

�

{π(x, s′) + δ

�

G(B(x, s′, µ1))}Q̄µ1
(ds′ | x)+

+ (1− λ)

�

{π(x, s′) + δ

�

G(B(x, s′, µ2))}Q̄µ2
(ds′ | x)

≤λB[G](µ1) + (1− λ)B[G](µ2)

as desired.

A.5 Proof of Theorem 3.

Consider the set H′
introdu
ed at the beginning of the proof of Theorem 2, and re
all

that Pf(H′) > 0. Observe that for any history and any t ∈ {0, 1, ...}, Pf(s′, x′ | ht) =

σt(h)(x
′|s′)Q(s′|st, xt). Thus, by the MCT, there exists a set M of histories su
h that

for ea
h h ∈ M

lim
t
||mt(h)− t−1

t
∑

τ=1

σt(h)(·|·)Q(·|st, xt)|| = 0

and Pf(M) = 1. Throughout, we �x a history h ∈ H′ ∩M, and note that Pf(H′ ∩

M) > 0. Hen
eforth, we omit the history from the notation. Also, de�ne M(s, µ) as

in the proof of Theorem 2.

We already proved 
ondition (iii) of the de�nition of Berk-Nash equilibrium when

we proved Theorem 2, so here we prove 
onditions (i) and (ii).

We �rst show σ(·|·) = m(·|·). To do this, observe that t−1
∑t

τ=1Q(·|st, xt) =
∑

s,xQ(·|s, x)mt(s, x) and so

lim
t→∞

||t−1
t

∑

τ=1

σt(h)(·|·)Q(·|st, xt)− σ(·|·)
∑

s,x

Q(·|s, x)m(s, x)|| = 0.

By our 
hoi
e of history, this implies that m(s′, x′) = σ(x′|s′)
∑

s,xQ(s′|s, x)m(s, x)

for any (s′, x′) ∈ ∆(S×X). By 
ondition (iii), it follows that m(s′, x′) = σ(x′|s′)m(s′),

whi
h implies that m(.|.) = σ(.|.), as desired.

Next, note that, by 
ompa
tness of ∆(Θ), we 
an �nd a subsequen
e of beliefs

(µt(k))k that 
onverges to some µ∗
. By our 
hoi
e of history (see beginning of proof)

and Lemma 2, µ∗ ∈ ∆(ΘQ(m)). Next, 
onsider any (s, x) su
h that m(s, x) > 0,
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whi
h readily implies that σ(x | s) > 0. By 
onvergen
e of σt(k) to σ, σt(k)(x | s) =

f(x | s, µt(k)) > 0 for all su�
iently large k. By optimality of f it follows that

x ∈ M(s, µt(k)) for all su�
iently large k. By uh
 of M and 
onvergen
e of µt(k) to

µ∗
, it follows that x ∈ M(s, µ∗). Thus, it follows that there exists µ∗ ∈ ∆(ΘQ(m))

su
h that, for any (s, x) in the support of m,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ∗))} Q̄µ∗(ds′|s, x̂). (39)

We 
on
lude by establishing that x is optimal given s in the MDP where the belief

is �xed at µ∗
. That is,

x ∈ argmax
x̂∈X

�

S

{π(s, x̂, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x̂)

where s 7→ Vµ∗(s) = maxx̂∈X
�

{π(s, x̂, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x̂).

Sin
e m(s) > 0 for all s, it follows that for any s and for any x su
h that m(x |

s) = σ(x | s) > 0,

W (s, µ∗) =

�

S

{π(s, x, s′) + δW (s′, B(s, x, s′, µ∗))} Q̄µ∗(ds′|s, x)

=

�

S

{π(s, x, s′) + δW (s′, µ∗)} Q̄µ∗(ds′|s, x) (40)

where the se
ond line follows from µ∗ ∈ ∆(ΘQ(m)) and weak identi�
ation. Therefore,

by the uniqueness of the value fun
tion, s 7→ W (s, µ∗) = Vµ∗(s).

Hen
e, it su�
es to show that for any x̂ ∈ X,

�

S

{π(s, x, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x) ≥

�

S

{π(s, x̂, s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x̂).

For this, let s 7→ x(s) be su
h that σ(x(s)|s) > 0 for all s ∈ S. Observe that

�

S

{π(s, x(s), s′) + δVµ∗(s′)} Q̄µ∗(ds′|s, x(s)) ≥

�

S

{π(s, x̂, s′) + δW (s′, B(s, x̂, s′, µ∗))} Q̄µ∗(ds′|s, x̂).
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By weak identi�
ation and the fa
t that (s′, x(s′)) ∈ supp(m), it follows that

W (s′, B(s, x̂, s′, µ∗)) ≥

�

S

{π(s′, x(s′), s′′) + δW (s′′, B(s, x̂, s′, µ∗))} Q̄B(s,x̂,s′,µ∗)(ds
′′|s′, x(s′))

=

�

S

{π(s′, x(s′), s′′) + δW (s′′, B(s, x̂, s′, µ∗))} Q̄µ∗(ds′′|s′, x(s′))

where the se
ond line follows be
ause B(s, x̂, s′, µ∗) ∈ ∆(ΘQ(m)) and under weak

identi�
ation this implies that s 7→ Q̄B(s,x̂,s′,µ∗)(·|s, x(s)) = Q̄µ∗(·|s, x(s)) for any

(s, x(s)) ∈ supp(m). By applying this inequality over and over to W (·, B(s, x̂, s′, µ∗)),

it follows that

W (s′, B(s, x̂, s′, µ∗)) ≥
∞
∑

j=0

δjQ̄j
µ∗

[
�

π(·, x(·), s′′)Q̄µ∗(ds′′|·, x(·))

]

(s′)

where g 7→ Q̄µ∗ [g](s) ≡
�

g(s′)Q̄µ∗(ds′|s, x(s)) for any s ∈ S. By uniqueness of the

value fun
tion, the RHS equals Vµ∗(s′) and thus

W (s′, B(s, x̂, s′, µ∗)) ≥ Vµ∗(s′)

for any s′ ∈ S, thereby implying the desired result.
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