
Algorithmic Classification: Theory, Data, and Welfare

Maggie Penn & John Patty

Emory University

1



Algorithms are used to guide high-stakes decisions about people

• Patients to treat

• Applicants approved for a loan

• Defendants that are granted bail

• Students admitted to a college

• Tax filers that are audited

• Communities police are deployed to
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While algorithms may be opaque, people understand they’re

being classified, and may change their behavior in costly ways to

obtain a good classification outcome

• Prospect of audit makes tax filers less likely to cheat

• Prospect of standardized test makes student more likely to study

• Prospect of good credit score drives responsible financial choices

These behavioral incentives may differ by group

• If I understand that it’s very unlikely that a woman will be hired

for a job even if qualified for it, I (as a woman) will have less of an

incentive to exert costly effort to obtain qualification
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This project

• An algorithm with a general objective function is designed to

classify a group of people

– Objectives can be with respect to both the behavior people

engage in and how they are classified

– Accuracy maximization, compliance maximization, revenue

maximization, hiring qualified workers, etc.

• People want to obtain a good classification outcome, and can

engage in a behavior (“compliance”) to obtain a better outcome

• The algorithm is designed to maximize its objective, knowing

that people will respond to it (a Stackelberg game)

4



A few takeaways on algorithms, keeping the EITM paradigm in mind

• Most work on algorithmic fairness focuses on the statistical accuracy

of classifiers

– Without a theory of individual incentives and behavior, these

statistical fairness measures can be grossly misleading

– While considered a gold standard in classification, we show that

accuracy maximization can drive inequality across groups

• The link between between algorithmic objectives & welfare is not

direct, though algorithms are often described in normative terms

– Increasing algorithm’s “taste for punishment” (making it more

predatory) can be Pareto improving

• EITM takeaway: Using data to make normative judgments about

human outcomes requires an explicit theory of what people want!
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The Model (Individuals)

• A unit mass of individuals N , with i ∈ N

• Each person chooses a costly behavior βi ∈ {0, 1}

(“compliance”)

– βi ∈ B represents an activity that each person will be

classified, and potentially rewarded, on the basis of

• Person i pays private cost γi to choose βi = 1

– Costs γ distributed with CDF F

– Example: βi captures “lawfulness” and γi is i’s

“cost to being lawful”
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The Algorithm

• Algorithm observes signal si about behavior βi drawn from

behavior-dependent PDF gβ (g1 and g0 satisfy the MLRP)

– The higher the signal, the more likely it was that the person

complied

• Signal could be a unidimensional test result

• Or we can think of each person’s set of covariates xi ∈ X as

associated with a likelihood ratio that is the signal

si =
P (xi|βi = 1)

P (xi|βi = 0)
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Classification

• After observing signal s the algorithm makes a binary

classification decision for each person, di ∈ {0, 1}

• The algorithm’s strategy δ maps each signal si into a probability

of reward:

δ(s) = Pr[di = 1|si]

• If di = 1 then i gets a reward, if di = 0 then i pays a penalty
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Individual Payoffs

• Each person receives the following payoff:

u(βi, di|γi) = r · di
︸︷︷︸

bonus if classified 1

− γi · βi
︸ ︷︷ ︸

cost if compliant

• r > 0 is an exogenous parameter capturing the

“stakes” to classification

r = (reward if classified d = 1)− (penalty if classified d = 0)

⇒ People benefit from receiving a positive classification

10



Individual Behavior

• The individual’s incentives ∆(δ) capture the net benefit to any

person of choosing βi = 1 over βi = 0

∆(δ) = r

∫

s∈R

(g1(s)− g0(s)) · δ(s)ds

• A person chooses βi = 1 if:

γi ≤ ∆(δ)
︸ ︷︷ ︸

cost to compliance low enough

• Algorithm is “behaviorally null” if ∆(δ) = 0

– If stakes to classification r = 0

– If δ(s) = c for all s (algorithm classifies everyone the same way)
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The Algorithm’s Objectives

Decision

Behavior di = 1 di = 0

βi = 1
A1 A0

(True Positive) (False Negative)

βi = 0
B0 B1

(False Positive) (True Negative)

Algorithm receives “payoff” A1, A0, B1, B0 ∈ R for % of people that

fall into each cell

Algorithm optimally designed to generate behavior (β) and bin

signals of behavior (d) into most beneficial cells of matrix
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Two Examples of Algorithm Objectives

Accuracy

di = 1 di = 0

βi = 1 A1 = 1 A0 = 0

βi = 0 B0 = 0 B1 = 1

Compliance

di = 1 di = 0

βi = 1 A1 = 1 A0 = 1

βi = 0 B0 = 0 B1 = 0
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Timing of Decisions

1. People privately observe their costs to compliance, γi

2. An algorithm δ(s) is publicly chosen / committed to

– Algorithm knows cost distribution F , signal distributions gβ

3. People make their compliance decisions βi ∈ {0, 1}

4. Signals are generated and classified according to algorithm δ(s)

5. Payoffs are distributed to people and the algorithm
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Optimal classifiers have a simple characterization

• The “best” algorithm sets a cutpoint τ∗ ∈ R ∪ ±∞ and utilizes

either a threshold or negative threshold rule

Threshold rule

τ∗(si) =







1 if si ≥ τ∗

0 otherwise.

Negative threshold rule

τ∗(si) =







0 if si ≥ τ∗

1 otherwise.
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How can negative threshold rules be optimal?

• These rules punish people with signals above some threshold, so

those more likely to have complied are punished

• This disincentivizes compliance

– Designer might have a direct taste for non-compliant behavior

– Or inducing non-compliance might make other goals

(e.g. accuracy!) easier to achieve

• A negative threshold is “cheapest” way to induce non-compliance

– Provides greatest behavioral incentive to not comply

(MLRP)

– Fewest misclassifications in the tail of the signal distribution
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Example: Accuracy maximization drives inequality

• Consider two groups that differ in their members’ average

costs to compliance

• Low cost group has costs distributed N [ 1
2
, 1]

– 31% of the population complies without any

extrinsic incentives

• High cost group has costs distributed N [ 3
4
, 1]

– 23% of the population complies without any

extrinsic incentives
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Most Accurate Classifiers for the Two Groups

• For the low-cost group, the most accurate classifier is a positive

threshold rule with τ∗ ≈ −0.2

– Equilibrium compliance is 85% (increased from 31%)

– This classifier is 81% accurate

• For the high-cost group, the most accurate classifier is a negative

threshold rule with τ∗ ≈ −1.4

– Equilibrium compliance is 13% (decreased from 23%)

– This classifier is 80% accurate

Stakes r = 5 and signal distributions are g0 = N [0, 1] and g1 = N [1, 1]
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Takeaways about “most accurate” algorithms

• Accuracy motivations often thought of as fair or neutral

– The algorithmic fairness literature focuses largely on statistical

error rates across groups in classification outcomes

– Here, both groups are correctly classified ≈ 80% of the time

– But the algorithm incentivizes opposite behavior for the

groups, exacerbating a kind of societal/behavioral inequality

across the groups

• Because data and behavior are performative (respond to the

algorithm), accuracy-maximization entails manipulating behavior

to overcome noisy data
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How robust is this example?

Proposition

For any reward r > 0 and any signal accuracy we can find two cost

distributions FX and FY for which the accuracy maximizing designer

• strictly incentivizes compliance for Group X and

• strictly incentivizes non-compliance for Group Y
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Example: Algorithm objectives and social welfare

Accuracy

di = 1 di = 0

βi = 1 A1 = 1 A0 = 0

βi = 0 B0 = 0 B1 = 1

Accurate + predatory

di = 1 di = 0

βi = 1 A1 = 1 A0 = 0.5

βi = 0 B0 = 0 B1 = 1.5

• Most accurate algorithm sets τ∗ = 0.462, yields 98% compliance

• “Predatory” algorithm sets τ∗ = 0.125, yields 96% compliance

• The predatory algorithm is more lenient, and is ex ante preferred

to the most accurate algorithm by every person being classified

Costs γ ∼ N [0, 1], stakes r = 2, signals g0(s) = N [0, 0.1], g1(s) = N [1, 0.1].
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Takeaways: Algorithm objectives and social welfare

• Without a theory of individual preferences, there’s no reason to

think accurate classification is desirable from standpoint of

those classified

• (More provocatively?) we should be careful using an algorithm’s

objectives to make welfare judgments without a theory of

behavior

– In this case, directly increasing the algorithm’s “taste” for

punishment (giving it a payoff bump for every d = 0)

strictly benefits every person in expectation
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Conclusions

• The prospect of being classified affects the life choices

people make

• When data are performative (respond to how the data are used,

as is often true of data about people) we need a theory of the

data generating process to make normative judgments

• Fairness with respect to how data are used (e.g. statistical

accuracy) might be at odds with fairness in the data generating

process

• EITM can help us make sense of these tensions!
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Related Literature

• Algorithmic Fairness & Welfare (Hu & Chen, 2019; Liang & Lu, 2024)

– Welfare effects of fair classification with fixed outcomes

• Behavioral Effects of Classification Design

(Jung, et al, 2020; Coate & Loury, 1993)

– Theoretically proximate; Jung considers compliance maximization;

Coate models a simultaneous move game with multiple equilibria

• Strategic Classification / Performative Prediction

(Hardt, et al, 2016; Hu, et al 2018; Perdomo, et al, 2021)

– Classification with endogenous (observable) data

• Outcome Performativity (Kim & Perdomo, 2023)

– Classification with endogenous outcomes

– Focus is whether data/outcomes can be learned; we assume alg

knows how data respond to it (our focus is behavior & welfare)
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